Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biochem J ; 478(22): 3977-3998, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34813650

RESUMO

Tunneling nanotubes (TNTs) are F-actin-based, membrane-enclosed tubular connections between animal cells that transport a variety of cellular cargo. Over the last 15 years since their discovery, TNTs have come to be recognized as key players in normal cell communication and organism development, and are also exploited for the spread of various microbial pathogens and major diseases like cancer and neurodegenerative disorders. TNTs have also been proposed as modalities for disseminating therapeutic drugs between cells. Despite the rapidly expanding and wide-ranging relevance of these structures in both health and disease, there is a glaring dearth of molecular mechanistic knowledge regarding the formation and function of these important but enigmatic structures. A series of fundamental steps are essential for the formation of functional nanotubes. The spatiotemporally controlled and directed modulation of cortical actin dynamics would be required to ensure outward F-actin polymerization. Local plasma membrane deformation to impart negative curvature and membrane addition at a rate commensurate with F-actin polymerization would enable outward TNT elongation. Extrinsic tactic cues, along with cognate intrinsic signaling, would be required to guide and stabilize the elongating TNT towards its intended target, followed by membrane fusion to create a functional TNT. Selected cargoes must be transported between connected cells through the action of molecular motors, before the TNT is retracted or destroyed. This review summarizes the current understanding of the molecular mechanisms regulating these steps, also highlighting areas that deserve future attention.


Assuntos
Comunicação Celular , Animais , Transporte Biológico , Linhagem Celular , Membrana Celular , Estruturas da Membrana Celular/imunologia , Estruturas da Membrana Celular/metabolismo , Estruturas da Membrana Celular/ultraestrutura , Humanos , Fusão de Membrana , Nanotubos/ultraestrutura
2.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34338279

RESUMO

The conserved exocyst complex regulates plasma membrane-directed vesicle fusion in eukaryotes. However, its role in stem cell proliferation has not been reported. Germline stem cell (GSC) proliferation in the nematode Caenorhabditis elegans is regulated by conserved Notch signaling. Here, we reveal that the exocyst complex regulates C. elegans GSC proliferation by modulating Notch signaling cell autonomously. Notch membrane density is asymmetrically maintained on GSCs. Knockdown of exocyst complex subunits or of the exocyst-interacting GTPases Rab5 and Rab11 leads to Notch redistribution from the GSC-niche interface to the cytoplasm, suggesting defects in plasma membrane Notch deposition. The anterior polarity (aPar) protein Par6 is required for GSC proliferation, and for maintaining niche-facing membrane levels of Notch and the exocyst complex. The exocyst complex biochemically interacts with the aPar regulator Par5 (14-3-3ζ) and Notch in C. elegans and human cells. Exocyst components are required for Notch plasma membrane localization and signaling in mammalian cells. Our study uncovers a possibly conserved requirement of the exocyst complex in regulating GSC proliferation and in maintaining optimal membrane Notch levels.


Assuntos
Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Nicho de Células-Tronco/fisiologia , Proteínas 14-3-3/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Comunicação Celular/fisiologia , Membrana Celular/fisiologia , Citoplasma/metabolismo , Citoplasma/fisiologia , Eucariotos/metabolismo , Eucariotos/fisiologia , Fusão de Membrana/fisiologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia
3.
FASEB J ; 35(1): e21199, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33222276

RESUMO

Tunneling nanotubes (TNTs) mediate intercellular communication between animal cells in health and disease, but the mechanisms of their biogenesis and function are poorly understood. Here we report that the RNA-binding protein (RBP) nucleolin, which interacts with the known TNT-inducing protein MSec, is essential for TNT formation in mammalian cells. Nucleolin, through its RNA-binding domains (RBDs), binds to and maintains the cytosolic levels of 14-3-3ζ mRNA, and is, therefore, required for TNT formation. A specific region of the 3'-untranslated region (UTR) of the 14-3-3ζ mRNA is likely to be involved in its regulation by nucleolin. Functional complementation experiments suggest that nucleolin and 14-3-3ζ form a linear signaling axis that promotes the phosphorylation and inactivation of the F-actin depolymerization factor cofilin to induce TNT formation. MSec also similarly inactivates cofilin, but potentiates TNT formation independent of the nucleolin-14-3-3ζ axis, despite biochemically interacting with both proteins. We show that 14-3-3ζ and nucleolin are required for the formation of TNTs between primary mouse neurons and astrocytes and in multiple other mammalian cell types. We also report that the Caenorhabditis elegans orthologs of 14-3-3ζ and MSec regulate the size and architecture of the TNT-like cellular protrusions of the distal tip cell (DTC), the germline stem cell niche in the gonad. Our study demonstrates a novel and potentially conserved mRNA-guided mechanism of TNT formation through the maintenance of cellular 14-3-3ζ mRNA levels by the RBP nucleolin.


Assuntos
Proteínas 14-3-3/metabolismo , Regiões 3' não Traduzidas , Fatores de Despolimerização de Actina/metabolismo , Comunicação Celular , Nanotubos , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas 14-3-3/genética , Fatores de Despolimerização de Actina/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Humanos , Fosfoproteínas/genética , Fosforilação , Proteínas de Ligação a RNA/genética , Nucleolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA