Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873177

RESUMO

The endoplasmic reticulum (ER) stores large amounts of calcium (Ca2+), and the controlled release of ER Ca2+ regulates a myriad of cellular functions. Although altered ER Ca2+ homeostasis is known to induce ER stress, the mechanisms by which ER Ca2+ imbalance activate ER stress pathways are poorly understood. Stromal-interacting molecules STIM1 and STIM2 are two structurally homologous ER-resident Ca2+ sensors that synergistically regulate Ca2+ influx into the cytosol through Orai Ca2+ channels for subsequent signaling to transcription and ER Ca2+ refilling. Here, we demonstrate that reduced STIM2, but not STIM1, in colorectal cancer (CRC) is associated with poor patient prognosis. Loss of STIM2 causes SERCA2-dependent increase in ER Ca2+, increased protein translation and transcriptional and metabolic rewiring supporting increased tumor size, invasion, and metastasis. Mechanistically, STIM2 loss activates cMyc and the PERK/ATF4 branch of ER stress in an Orai-independent manner. Therefore, STIM2 and PERK/ATF4 could be exploited for prognosis or in targeted therapies to inhibit CRC tumor growth and metastasis.

2.
J Biol Chem ; 299(11): 105310, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778728

RESUMO

T-cell receptor stimulation triggers cytosolic Ca2+ signaling by inositol-1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum (ER) and Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels gated by ER-located stromal-interacting molecules (STIM1/2). Physiologically, cytosolic Ca2+ signaling manifests as regenerative Ca2+ oscillations, which are critical for nuclear factor of activated T-cells-mediated transcription. In most cells, Ca2+ oscillations are thought to originate from IP3 receptor-mediated Ca2+ release, with CRAC channels indirectly sustaining them through ER refilling. Here, experimental and computational evidence support a multiple-oscillator mechanism in Jurkat T-cells whereby both IP3 receptor and CRAC channel activities oscillate and directly fuel antigen-evoked Ca2+ oscillations, with the CRAC channel being the major contributor. KO of either STIM1 or STIM2 significantly reduces CRAC channel activity. As such, STIM1 and STIM2 synergize for optimal Ca2+ oscillations and activation of nuclear factor of activated T-cells 1 and are essential for ER refilling. The loss of both STIM proteins abrogates CRAC channel activity, drastically reduces ER Ca2+ content, severely hampers cell proliferation and enhances cell death. These results clarify the mechanism and the contribution of STIM proteins to Ca2+ oscillations in T-cells.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Humanos , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio/genética , Células Jurkat , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/metabolismo , Técnicas de Inativação de Genes , Modelos Biológicos , Isoformas de Proteínas , Transporte Proteico/genética , Proliferação de Células/genética , Sobrevivência Celular/genética
3.
Elife ; 122023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36803766

RESUMO

The essential role of store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels in T cells is well established. In contrast, the contribution of individual Orai isoforms to SOCE and their downstream signaling functions in B cells are poorly understood. Here, we demonstrate changes in the expression of Orai isoforms in response to B cell activation. We show that both Orai3 and Orai1 mediate native CRAC channels in B cells. The combined loss of Orai1 and Orai3, but not Orai3 alone, impairs SOCE, proliferation and survival, nuclear factor of activated T cells (NFAT) activation, mitochondrial respiration, glycolysis, and the metabolic reprogramming of primary B cells in response to antigenic stimulation. Nevertheless, the combined deletion of Orai1 and Orai3 in B cells did not compromise humoral immunity to influenza A virus infection in mice, suggesting that other in vivo co-stimulatory signals can overcome the requirement of BCR-mediated CRAC channel function in B cells. Our results shed important new light on the physiological roles of Orai1 and Orai3 proteins in SOCE and the effector functions of B lymphocytes.


Assuntos
Linfócitos B , Canais de Cálcio , Proteína ORAI1 , Animais , Camundongos , Linfócitos B/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
5.
J Biol Chem ; 298(8): 102259, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35841929

RESUMO

The structural changes of airway smooth muscle (ASM) that characterize airway remodeling (AR) are crucial to the pathogenesis of asthma. During AR, ASM cells dedifferentiate from a quiescent to a proliferative, migratory, and secretory phenotype. Calcium (Ca2+) is a ubiquitous second messenger that regulates many cellular processes, including proliferation, migration, contraction, and metabolism. Furthermore, mitochondria have emerged as major Ca2+ signaling organelles that buffer Ca2+ through uptake by the mitochondrial Ca2+ uniporter and extrude it through the Na+/Ca2+ exchanger (NCLX/Slc8b1). Here, we show using mitochondrial Ca2+-sensitive dyes that NCLX only partially contributes to mitochondrial Ca2+ extrusion in ASM cells. Yet, NCLX is necessary for ASM cell proliferation and migration. Through cellular imaging, RNA-Seq, and biochemical assays, we demonstrate that NCLX regulates these processes by preventing mitochondrial Ca2+ overload and supporting store-operated Ca2+ entry, activation of Ca2+/calmodulin-dependent kinase II, and transcriptional and metabolic reprogramming. Using small animal respiratory mechanic measurements and immunohistochemistry, we show that smooth muscle-specific NCLX KO mice are protected against AR, fibrosis, and hyperresponsiveness in an experimental model of asthma. Our findings support NCLX as a potential therapeutic target in the treatment of asthma.


Assuntos
Asma , Trocador de Sódio e Cálcio , Remodelação das Vias Aéreas , Animais , Asma/genética , Cálcio/metabolismo , Camundongos , Músculo Liso/metabolismo , Sódio/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
6.
Cell Mol Life Sci ; 79(6): 284, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35526196

RESUMO

BACKGROUND AND AIMS: Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX. METHODS: We examined whether curcumin and pharmacological compounds induced the inhibition of NCLX-mediated mitochondrial calcium (mtCa2+) extrusion, the role of redox metabolism in this process. We evaluated their anti-tumorigenic activity in vitro and in a xenograft mouse model. We analyzed NCLX expression and associations with survival in The Cancer Genome Atlas (TCGA) dataset and in tissue microarrays from 381 patients with microsatellite instability (MSI)-driven CRC. RESULTS: In vitro, curcumin exerted strong anti-tumoral activity through its action on NCLX with mtCa2+ and reactive oxygen species overload associated with a mitochondrial membrane depolarization, leading to reduced ATP production and apoptosis. NCLX inhibition with pharmacological and molecular approaches reproduced the effects of curcumin. NCLX inhibitors decreased CRC tumor growth in vivo. Both transcriptomic analysis of TCGA dataset and immunohistochemical analysis of tissue microarrays demonstrated that higher NCLX expression was associated with MSI status, and for the first time, NCLX expression was significantly associated with recurrence-free survival. CONCLUSIONS: Our findings highlight a novel anti-tumoral mechanism of curcumin through its action on NCLX and mitochondria calcium overload that could benefit for therapeutic schedule of patients with MSI CRC.


Assuntos
Neoplasias Colorretais , Curcumina , Instabilidade de Microssatélites , Trocador de Sódio e Cálcio , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Curcumina/farmacologia , Humanos , Camundongos , Repetições de Microssatélites , Proteínas Mitocondriais/metabolismo , Trocador de Sódio e Cálcio/antagonistas & inibidores
7.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34949717

RESUMO

Airway remodeling and airway hyperresponsiveness are central drivers of asthma severity. Airway remodeling is a structural change involving the dedifferentiation of airway smooth muscle (ASM) cells from a quiescent to a proliferative and secretory phenotype. Here, we show up-regulation of the endoplasmic reticulum Ca2+ sensor stromal-interacting molecule 1 (STIM1) in ASM of asthmatic mice. STIM1 is required for metabolic and transcriptional reprogramming that supports airway remodeling, including ASM proliferation, migration, secretion of cytokines and extracellular matrix, enhanced mitochondrial mass, and increased oxidative phosphorylation and glycolytic flux. Mechanistically, STIM1-mediated Ca2+ influx is critical for the activation of nuclear factor of activated T cells 4 and subsequent interleukin-6 secretion and transcription of pro-remodeling transcription factors, growth factors, surface receptors, and asthma-associated proteins. STIM1 drives airway hyperresponsiveness in asthmatic mice through enhanced frequency and amplitude of ASM cytosolic Ca2+ oscillations. Our data advocates for ASM STIM1 as a target for asthma therapy.


Assuntos
Remodelação das Vias Aéreas , Asma/fisiopatologia , Músculo Liso/fisiopatologia , Hipersensibilidade Respiratória , Molécula 1 de Interação Estromal/fisiologia , Animais , Asma/patologia , Cálcio/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Reprogramação Celular/fisiologia , Doença Crônica , Transporte de Íons , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Liso/patologia , Molécula 1 de Interação Estromal/genética , Transcrição Gênica/fisiologia
8.
J Biol Chem ; 297(4): 101174, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499925

RESUMO

Mitochondrial Ca2+ uptake tailors the strength of stimulation of plasma membrane phospholipase C-coupled receptors to that of cellular bioenergetics. However, how Ca2+ uptake by the mitochondrial Ca2+ uniporter (MCU) shapes receptor-evoked interorganellar Ca2+ signaling is unknown. Here, we used CRISPR/Cas9 gene knockout, subcellular Ca2+ imaging, and mathematical modeling to show that MCU is a universal regulator of intracellular Ca2+ signaling across mammalian cell types. MCU activity sustains cytosolic Ca2+ signaling by preventing Ca2+-dependent inactivation of store-operated Ca2+ release-activated Ca2+ channels and by inhibiting Ca2+ extrusion. Paradoxically, MCU knockout (MCU-KO) enhanced cytosolic Ca2+ responses to store depletion. Physiological agonist stimulation in MCU-KO cells led to enhanced frequency of cytosolic Ca2+ oscillations, endoplasmic reticulum Ca2+ refilling, nuclear translocation of nuclear factor for activated T cells transcription factors, and cell proliferation, without altering inositol-1,4,5-trisphosphate receptor activity. Our data show that MCU has dual counterbalancing functions at the cytosol-mitochondria interface, whereby the cell-specific MCU-dependent cytosolic Ca2+ clearance and buffering capacity of mitochondria reciprocally regulate interorganellar Ca2+ transfer and nuclear factor for activated T cells nuclear translocation during receptor-evoked signaling. These findings highlight the critical dual function of the MCU not only in the acute Ca2+ buffering by mitochondria but also in shaping endoplasmic reticulum and cytosolic Ca2+ signals that regulate cellular transcription and function.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição NFATC/metabolismo , Sistemas CRISPR-Cas , Canais de Cálcio/genética , Retículo Endoplasmático , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Humanos , Células Jurkat , Ativação Linfocitária , Fatores de Transcrição NFATC/genética , Linfócitos T/metabolismo
10.
Cell Calcium ; 91: 102281, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32896813

RESUMO

The ubiquitous Ca2+ release-activated Ca2+ (CRAC) channel is crucial to many physiological functions. Both gain and loss of CRAC function is linked to disease. While ORAI1 is a crucial subunit of CRAC channels, recent evidence suggests that ORAI2 and ORAI3 heteromerize with ORAI1 to form native CRAC channels. Furthermore, ORAI2 and ORAI3 can form CRAC channels independently of ORAI1, suggesting diverse native CRAC stoichiometries. Yet, most available CRAC modifiers are presumed to target ORAI1 with little knowledge of their effects on ORAI2/3 or heteromers of ORAIs. Here, we used ORAI1/2/3 triple-null cells to express individual ORAI1, ORAI2, ORAI3 or ORAI1/2/3 concatemers. We reveal that GSK-7975A and BTP2 essentially abrogate ORAI1 and ORAI2 activity while causing only a partial inhibition of ORAI3. Interestingly, Synta66 abrogated ORAI1 channel function, while potentiating ORAI2 with no effect on ORAI3. CRAC channel activities mediated by concatenated ORAI1-1, ORAI1-2 and ORAI1-3 dimers were inhibited by Synta66, while ORAI2-3 dimers were unaffected. The CRAC enhancer IA65 significantly potentiated ORAI1 and ORAI1-1 activity with marginal effects on other ORAIs. Further, we characterized the profiles of individual ORAI isoforms in the presence of Gd3+ (5µM), 2-APB (5 µM and 50 µM), as well as changes in intracellular and extracellular pH. Our data reveal unique pharmacological features of ORAI isoforms expressed in an ORAI-null background and provide new insights into ORAI isoform selectivity of widely used CRAC pharmacological compounds.


Assuntos
Canais de Cálcio/metabolismo , Proteína ORAI1/metabolismo , Proteína ORAI2/metabolismo , Anilidas/farmacologia , Benzamidas/farmacologia , Células HEK293 , Humanos , Isoformas de Proteínas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Pirazóis/farmacologia , Tiadiazóis/farmacologia
11.
Cell Calcium ; 92: 102280, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919102

RESUMO

Mitochondrial Ca2+ signaling is a well-appreciated regulator of cell metabolism and energy production. A major function of mitochondria in brown adipose tissue (BAT) is thermogenesis. Assali et al. offer new insights into how the mitochondrial Ca2+ extrusion mediator NCLX is crucial for BAT survival and thermogenesis.


Assuntos
Tecido Adiposo Marrom , Trocador de Sódio e Cálcio , Adrenérgicos , Morte Celular , Temperatura Alta
12.
Elife ; 92020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914752

RESUMO

Despite the established role of mitochondria in cancer, the mechanisms by which mitochondrial Ca2+ (mtCa2+) regulates tumorigenesis remain incompletely understood. The crucial role of mtCa2+ in tumorigenesis is highlighted by altered expression of proteins mediating mtCa2+ uptake and extrusion in cancer. Here, we demonstrate decreased expression of the mitochondrial Na+/Ca2+/Li+ exchanger NCLX (SLC8B1) in human colorectal tumors and its association with advanced-stage disease in patients. Downregulation of NCLX causes mtCa2+ overload, mitochondrial depolarization, decreased expression of cell-cycle genes and reduced tumor size in xenograft and spontaneous colorectal cancer mouse models. Concomitantly, NCLX downregulation drives metastatic spread, chemoresistance, and expression of epithelial-to-mesenchymal, hypoxia, and stem cell pathways. Mechanistically, mtCa2+ overload leads to increased mitochondrial reactive oxygen species, which activate HIF1α signaling supporting metastasis of NCLX-null tumor cells. Thus, loss of NCLX is a novel driver of metastasis, indicating that regulation of mtCa2+ is a novel therapeutic approach in metastatic colorectal cancer.


Colorectal cancer is the second largest cause of cancer deaths worldwide. Even in cases where the cancer is diagnosed and treated early, cells can sometimes survive treatment and spread to other organs. Once the cancer has spread, the survival rate is less than 15%. Mitochondria are compartments in the cell that produce energy, and they play an important role in supporting the rapid growth of cancer cells. The levels of calcium ions in mitochondria control how they produce energy, a process that is altered in cancer cells. To better understand how calcium ions influence colorectal cancer growth, Pathak, Gueguinou et al. studied a protein called NCLX, which controls calcium levels by pumping them out of the mitochondria. Two mouse strains that were used to study what happens if NCLX is missing. The first strain was genetically modified to disable the gene for NCLX and then exposed to carcinogens. The second strain was injected with colorectal cancer cells from a human tumor that were lacking NCLX. In both strains, the tumors that formed were smaller than in mice with NCLX. However, the human cancer cells in the second model were more likely to spread to other organs. This is likely because the build-up of calcium ions in the mitochondria of mice lacking NCLX led to an increase in the production of hypoxia-inducible factor-1a, a protein that is a common driver of cancer spread. Pathak, Gueguinou et al. demonstrated how NCLX can affect colorectal cancer progression. It suggests that it may have opposing effects during early and late-stage colorectal cancer, encouraging tumor growth but also decreasing the spread to other organs. Further research could help refine treatments at different stages of the disease.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas Mitocondriais/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Cálcio/metabolismo , Colo/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Metástase Neoplásica
13.
Nat Commun ; 10(1): 1971, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036819

RESUMO

ORAI1 constitutes the store-operated Ca2+ release-activated Ca2+ (CRAC) channel crucial for life. Whereas ORAI1 activation by Ca2+-sensing STIM proteins is known, still obscure is how ORAI1 is turned off through Ca2+-dependent inactivation (CDI), protecting against Ca2+ toxicity. Here we identify a spatially-restricted Ca2+/cAMP signaling crosstalk critical for mediating CDI. Binding of Ca2+-activated adenylyl cyclase 8 (AC8) to the N-terminus of ORAI1 positions AC8 near the mouth of ORAI1 for sensing Ca2+. Ca2+ permeating ORAI1 activates AC8 to generate cAMP and activate PKA. PKA, positioned by AKAP79 near ORAI1, phosphorylates serine-34 in ORAI1 pore extension to induce CDI whereas recruitment of the phosphatase calcineurin antagonizes the effect of PKA. Notably, CDI shapes ORAI1 cytosolic Ca2+ signature to determine the isoform and degree of NFAT activation. Thus, we uncover a mechanism of ORAI1 inactivation, and reveal a hitherto unappreciated role for inactivation in shaping cellular Ca2+ signals and NFAT activation.


Assuntos
Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteína ORAI1/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Western Blotting , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Fosforilação , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/metabolismo
14.
J Biol Chem ; 294(16): 6318-6332, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30824535

RESUMO

Store-operated Ca2+ entry (SOCE) is a ubiquitous pathway for Ca2+ influx across the plasma membrane (PM). SOCE is mediated by the endoplasmic reticulum (ER)-associated Ca2+-sensing proteins stromal interaction molecule 1 (STIM1) and STIM2, which transition into an active conformation in response to ER Ca2+ store depletion, thereby interacting with and gating PM-associated ORAI1 channels. Although structurally homologous, STIM1 and STIM2 generate distinct Ca2+ signatures in response to varying strengths of agonist stimulation. The physiological functions of these Ca2+ signatures, particularly under native conditions, remain unclear. To investigate the structural properties distinguishing STIM1 and STIM2 activation of ORAI1 channels under native conditions, here we used CRISPR/Cas9 to generate STIM1-/-, STIM2-/-, and STIM1/2-/- knockouts in HEK293 and colorectal HCT116 cells. We show that depending on cell type, STIM2 can significantly sustain SOCE in response to maximal store depletion. Utilizing the SOCE modifier 2-aminoethoxydiphenyl borate (2-APB), we demonstrate that 2-APB-activated store-independent Ca2+ entry is mediated exclusively by endogenous STIM2. Using variants that either stabilize or disrupt intramolecular interactions of STIM C termini, we show that the increased flexibility of the STIM2 C terminus contributes to its selective store-independent activation by 2-APB. However, STIM1 variants with enhanced flexibility in the C terminus failed to support its store-independent activation. STIM1/STIM2 chimeric constructs indicated that coordination between N-terminal sensitivity and C-terminal flexibility is required for specific store-independent STIM2 activation. Our results clarify the structural determinants underlying activation of specific STIM isoforms, insights that are potentially useful for isoform-selective drug targeting.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Compostos de Boro/química , Compostos de Boro/farmacologia , Cálcio/química , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Técnicas de Silenciamento de Genes , Células HCT116 , Células HEK293 , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/química , Molécula 2 de Interação Estromal/genética
15.
Nat Commun ; 9: 16230, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30019696

RESUMO

This corrects the article DOI: 10.1038/ncomms11751.

16.
Pharmacol Ther ; 192: 112-123, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30036491

RESUMO

Mitochondrial Ca2+ regulation is crucial for bioenergetics and cellular signaling. The mechanisms controlling mitochondrial calcium homeostasis have been recently unraveled with the discovery of mitochondrial inner membrane proteins that regulate mitochondrial Ca2+ uptake and extrusion. Mitochondrial Ca2+ uptake depends on a large complex of proteins centered around the Ca2+ channel protein, mitochondrial Ca2+ uniporter (MCU) in close interactions with several regulatory subunits (MCUb, EMRE, MICU1, MICU2). Mitochondrial Ca2+ extrusion is mainly mediated by the mitochondrial Na+/Ca2+/Li+ exchanger (NCLX). Here, we review the major players of mitochondrial Ca2+ homeostasis and their physiological functions.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Animais , Metabolismo Energético , Homeostase , Humanos
17.
G3 (Bethesda) ; 7(3): 923-933, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28131984

RESUMO

Molecular components of store-operated calcium entry have been identified in the recent past and consist of the endoplasmic reticulum (ER) membrane-resident calcium sensor STIM and the plasma membrane-localized calcium channel Orai. The physiological function of STIM and Orai is best defined in vertebrate immune cells. However, genetic studies with RNAi strains in Drosophila suggest a role in neuronal development and function. We generated a CRISPR-Cas-mediated deletion for the gene encoding STIM in Drosophila (dSTIM), which we demonstrate is larval lethal. To study STIM function in neurons, we merged the CRISPR-Cas9 method with the UAS-GAL4 system to generate either tissue- or cell type-specific inducible STIM knockouts (KOs). Our data identify an essential role for STIM in larval dopaminergic cells. The molecular basis for this cell-specific requirement needs further investigation.


Assuntos
Sistemas CRISPR-Cas/genética , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Drosophila melanogaster/genética , Mutação/genética , Animais , Tamanho Corporal , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Técnicas de Inativação de Genes , Homozigoto , Larva/metabolismo , Neurônios/metabolismo , Especificidade de Órgãos/genética
18.
Nat Commun ; 7: 11751, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225060

RESUMO

Orai channels are required for store-operated Ca(2+) entry (SOCE) in multiple cell types. Septins are a class of GTP-binding proteins that function as diffusion barriers in cells. Here we show that Septin 7 acts as a 'molecular brake' on activation of Orai channels in Drosophila neurons. Lowering Septin 7 levels results in dOrai-mediated Ca(2+) entry and higher cytosolic Ca(2+) in resting neurons. This Ca(2+) entry is independent of depletion of endoplasmic reticulum Ca(2+) stores and Ca(2+) release through the inositol-1,4,5-trisphosphate receptor. Importantly, store-independent Ca(2+) entry through Orai compensates for reduced SOCE in the Drosophila flight circuit. Moreover, overexpression of Septin 7 reduces both SOCE and flight duration, supporting its role as a negative regulator of Orai channel function in vivo. Septin 7 levels in neurons can, therefore, alter neural circuit function by modulating Orai function and Ca(2+) homeostasis.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neurônios/metabolismo , Proteína ORAI1/genética , Septinas/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Voo Animal/fisiologia , Regulação da Expressão Gênica , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Neurônios/citologia , Proteína ORAI1/metabolismo , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Septinas/metabolismo
19.
J Neurosci ; 35(40): 13784-99, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446229

RESUMO

Store operated calcium entry (SOCE) is thought to primarily regulate calcium homeostasis in neurons. Subsequent to identification of Orai as the SOCE channel in nonexcitable cells, investigation of Orai function in neurons demonstrated a requirement for SOCE in Drosophila flight. Here, by analysis of an Orai mutant and by controlled expression of a dominant-negative Drosophila Orai transgene, we show that Orai-mediated SOCE is required in dopaminergic interneurons of the flight circuit during pupal development. Expression of dominant-negative Orai in dopaminergic neurons of pupae abolished flight. The loss of Orai-mediated SOCE alters transcriptional regulation of dopaminergic neurons, leading to downregulation of the enzyme tyrosine hydroxylase, which is essential for dopamine synthesis, and the dopamine transporter, which is required for dopamine uptake after synaptic release. These studies suggest that modulation of SOCE could serve as a novel mechanism for restoring dopamine levels in dopaminergic neurons. SIGNIFICANCE STATEMENT: The specificity of an animal's response to an environmental stimulus is determined in part by the release of neurotransmitters, which are sensed by responding neurons through cognate receptors on their surface. One way by which neurons respond is through release of calcium from intracellular stores followed by store refilling from extracellular calcium sources. This mechanism is called store-operated calcium entry (SOCE). The function of SOCE in neurons has been debated. Here we describe a new function for SOCE in the regulation of neurotransmitter levels in Drosophila flight neurons. This cell-signaling mechanism is required to maintain optimal levels of a key enzyme for dopamine synthesis and may serve as a mechanism for restoring dopamine levels in relevant pathological conditions.


Assuntos
Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Voo Animal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Animais Geneticamente Modificados , Sinalização do Cálcio/genética , Células Cultivadas , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila , Proteínas de Drosophila/genética , Citometria de Fluxo , Larva , Proteínas de Membrana/genética , Vias Neurais/fisiologia , Proteína ORAI1 , Pupa , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA