Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Immunol ; 44(8): 170, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098944

RESUMO

Advanced genomic technologies such as whole exome or whole genome sequencing have improved diagnoses and disease outcomes for individuals with genetic diseases. Yet, variants of unknown significance (VUS) require rigorous validation to establish disease causality or modification, or to exclude them from further analysis. Here, we describe a young individual of Polynesian ancestry who in the first 13 mo of life presented with SARS-CoV-2 pneumonia, severe enterovirus meningitis and adenovirus gastroenteritis, and severe adverse reaction to MMR vaccination. Genomic analysis identified a previously reported pathogenic homozygous variant in IFNAR1 (c.1156G > T, p.Glu386* LOF), which is common in Western Polynesia. Moreover, a new and putatively deleterious canonical splice site variant in DOCK8 was also found in homozygosity (c.3234 + 2T > C). This DOCK8 variant is common in Polynesians and other under-represented ancestries in large genomic databases. Despite in silico bioinformatic predictions, extensive in vitro and ex vivo analysis revealed the DOCK8 variant likely be neutral. Thus, our study reports a novel case of IFNAR1 deficiency, but also highlights the importance of functional validation of VUS, including those predicted to be deleterious, and the pressing need to expand our knowledge of the genomic architecture and landscape of under-represented populations and ancestries.


Assuntos
COVID-19 , Fatores de Troca do Nucleotídeo Guanina , Receptor de Interferon alfa e beta , SARS-CoV-2 , Humanos , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/deficiência , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/deficiência , COVID-19/genética , SARS-CoV-2/genética , Lactente , Sítios de Splice de RNA/genética , Masculino , Feminino , Mutação/genética , Homozigoto
2.
Methods Mol Biol ; 2826: 189-199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017894

RESUMO

The use of flow cytometry for immunophenotyping is contingent on the ability to accurately assign biological relevance to the detected signal. This process has historically been challenging when defining IgE expressing B cells or IgE expressing antibody-secreting cells due to widespread expression of receptors for IgE on various leukocyte subsets, including human B cells. Here we describe our implementation of intracellular staining for human IgE following a blocking step to negate the challenge of surface-bound IgE. We also describe our experience with a human B cell culture system that can be used to robustly validate this approach before application to primary human samples. Orthogonal confirmatory techniques remain essential; these are not described in detail, but several possible strategies are suggested.


Assuntos
Citometria de Fluxo , Imunoglobulina E , Imunofenotipagem , Humanos , Citometria de Fluxo/métodos , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Imunofenotipagem/métodos , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/citologia , Receptores de IgE/metabolismo , Linhagem da Célula/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/citologia
3.
J Clin Immunol ; 44(3): 66, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363477

RESUMO

B cells and their secreted antibodies are fundamental for host-defense against pathogens. The generation of high-affinity class switched antibodies results from both somatic hypermutation (SHM) of the immunoglobulin (Ig) variable region genes of the B-cell receptor and class switch recombination (CSR) which alters the Ig heavy chain constant region. Both of these processes are initiated by the enzyme activation-induced cytidine deaminase (AID), encoded by AICDA. Deleterious variants in AICDA are causal of hyper-IgM syndrome type 2 (HIGM2), a B-cell intrinsic primary immunodeficiency characterised by recurrent infections and low serum IgG and IgA levels. Biallelic variants affecting exons 2, 3 or 4 of AICDA have been identified that impair both CSR and SHM in patients with autosomal recessive HIGM2. Interestingly, B cells from patients with autosomal dominant HIGM2, caused by heterozygous variants (V186X, R190X) located in AICDA exon 5 encoding the nuclear export signal (NES) domain, show abolished CSR but variable SHM. We herein report the immunological and functional phenotype of two related patients presenting with common variable immunodeficiency who were found to have a novel heterozygous variant in AICDA (L189X). This variant led to a truncated AID protein lacking the last 10 amino acids of the NES at the C-terminal domain. Interestingly, patients' B cells carrying the L189X variant exhibited not only greatly impaired CSR but also SHM in vivo, as well as CSR and production of IgG and IgA in vitro. Our findings demonstrate that the NES domain of AID can be essential for SHM, as well as for CSR, thereby refining the correlation between AICDA genotype and SHM phenotype as well as broadening our understanding of the pathophysiology of HIGM disorders.


Assuntos
Citidina Desaminase , Síndrome de Imunodeficiência com Hiper-IgM , Switching de Imunoglobulina , Humanos , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Síndrome de Imunodeficiência com Hiper-IgM/genética , Imunoglobulina A/genética , Switching de Imunoglobulina/genética , Imunoglobulina G/genética , Fenótipo , Hipermutação Somática de Imunoglobulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA