Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Sci Rep ; 14(1): 14045, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890495

RESUMO

A composite of Zinc oxide loaded with 5-weight % silver decorated on carbon nanotubes (Ag-loaded ZnO: CNT) was synthesized using a simple refluxed chemical method. The influence of deviation in the weight % of carbon nanotube loading on photocatalytic dye degradation (methylene blue and rose bengal) and antibiotic (antimicrobial and antifungal) performance was investigated in this study. The light capture ability of Ag-loaded ZnO:CNT in the visible region was higher in photocatalytic activity than that of Ag-loaded ZnO and ZnO:CNT. The bandgap of the Ag-loaded ZnO: CNT was tuned owing to the surface plasmon resonance effect. The photocatalytic degradation investigations were optimized by varying the wt% in CNTs, pH of dye solution, concentration of the dye solution, and amount of catalytic dose. Around 100% photocatalytic efficiency in 2 min against MB dye was observed for Ag doped ZnO with 10 wt% CNT composite at pH 9, at a rate constant 1.48 min-1. Bipolaris sorokiniana fungus was first time tested against a composite material, which demonstrated optimum fungal inhibition efficiency of 48%. They were also tested against the bacterial strains Staphylococcus aureus, Bacillus cerius, Proteus vulgaris, and Salmonella typhimurium, which showed promising antibacterial activity compared to commercially available drugs. The composite of Ag doped ZnO with 5 wt% CNT has shown competitive zone inhibition efficacy of 21.66 ± 0.57, 15.66 ± 0.57, 13.66 ± 0.57 against bacterial strains Bacillus cerius, Proteus vulgaris, and Salmonella typhimurium which were tested for the first time against Ag-loaded ZnO:CNT.


Assuntos
Antibacterianos , Antifúngicos , Nanotubos de Carbono , Prata , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Prata/química , Prata/farmacologia , Nanotubos de Carbono/química , Antibacterianos/farmacologia , Antibacterianos/química , Catálise , Antifúngicos/farmacologia , Antifúngicos/química , Staphylococcus aureus/efeitos dos fármacos , Azul de Metileno/química , Azul de Metileno/farmacologia , Corantes/química , Corantes/farmacologia , Rosa Bengala/química , Rosa Bengala/farmacologia , Testes de Sensibilidade Microbiana , Salmonella typhimurium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fotólise , Processos Fotoquímicos
3.
J Agric Food Chem ; 72(6): 2835-2852, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315814

RESUMO

This comprehensive review explores the emerging landscape of Nano-QSAR (quantitative structure-activity relationship) for assessing the risk and potency of nanomaterials in agricultural settings. The paper begins with an introduction to Nano-QSAR, providing background and rationale, and explicitly states the hypotheses guiding the review. The study navigates through various dimensions of nanomaterial applications in agriculture, encompassing their diverse properties, types, and associated challenges. Delving into the principles of QSAR in nanotoxicology, this article elucidates its application in evaluating the safety of nanomaterials, while addressing the unique limitations posed by these materials. The narrative then transitions to the progression of Nano-QSAR in the context of agricultural nanomaterials, exemplified by insightful case studies that highlight both the strengths and the limitations inherent in this methodology. Emerging prospects and hurdles tied to Nano-QSAR in agriculture are rigorously examined, casting light on important pathways forward, existing constraints, and avenues for research enhancement. Culminating in a synthesis of key insights, the review underscores the significance of Nano-QSAR in shaping the future of nanoenabled agriculture. It provides strategic guidance to steer forthcoming research endeavors in this dynamic field.


Assuntos
Nanoestruturas , Relação Quantitativa Estrutura-Atividade , Nanoestruturas/toxicidade , Agricultura , Recompensa
4.
Heliyon ; 10(4): e25709, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390080

RESUMO

Artemisia nilagirica is an important medicinal plant found to exhibit several medicinal properties but the use of its leaves for combating E. coli infection has not been scientifically validated in poultry. The present study was conducted to evaluate the protective effects of methanol leaf extract of A. nilagirica (ANE) on E. coli challenged broiler chickens. Three hundred and thirty, day-old broiler chickens, were divided into 6 groups of 55 each, with group EX infected intraperitoneally (I/P) with LD50 dose of 1 × 107 cfu/ml of E. coli; group(s) EA1, EA2 and EA3 infected I/P with 1 × 107 cfu/ml of E. coli and supplemented with ANE @ 0.5, 1.0 and 2.0 g/L of drinking water, respectively; group AX were only given ANE @ 2.0 g/L in the drinking water. ANE treatment was started from day 4 and was continuously given in the drinking water up to day 21. E. coli infection was given to the birds on day 7 of their age. The effect of the plant extract was evaluated on the basis of gross, microscopic and ultrastructural alterations in E. coli challenged broiler chickens. The extract of A. nilagirica was found to show antibacterial, cardioprotective and hepatoprotective properties in a dose-dependent manner on the basis of gross and microscopic examination. The methanol extract of A. nilagirica leaves revealed no toxic effect on the hepatocytes on ultrastructural evaluation. This study demonstrates the antimicrobial, hepatoprotective and cardioprotective activities of ANE in broiler chickens infected with E. coli organism.

5.
BMC Res Notes ; 17(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167002

RESUMO

OBJECTIVES: Candida albicans, a polymorphic yeast, is one of the most common, opportunistic fungal pathogens of humans. Among the different morphological forms, opaque form is one of the least-studied ones. This opaque phenotype is essential for mating and is also reported to be involved in colonizing the gastrointestinal tract. Considering the significance of the clinical and sexual reproduction of C. albicans, we have investigated the morphophysiological modulations in opaque form using a proteomic approach. DATA DESCRIPTION: In the current investigation, we have used Micro-Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis to create a protein profile for opaque-specific proteins. Whole-cell proteins from C. albicans (ATCC10231) cells that had been cultured for seven days on synthetic complete dextrose (SCD) medium in both as an opaque (test) and as a white (control) form cells were extracted, digested, and identified using LC-MS/MS. This information is meant to serve the scientific community and represents the proteome profile (SWATH Spectral Libraries) of C. albicans opaque form.


Assuntos
Candida albicans , Proteínas Fúngicas , Humanos , Candida albicans/genética , Proteínas Fúngicas/metabolismo , Proteoma/metabolismo , Cromatografia Líquida , Proteômica , Genes Fúngicos Tipo Acasalamento , Espectrometria de Massas em Tandem , Fenótipo , Regulação Fúngica da Expressão Gênica
6.
J Biomol Struct Dyn ; : 1-17, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38174407

RESUMO

A series of 1, 2, 4, 5-tetrasubstituted imidazole derivatives were synthesized and their antibiofilm potential against Candida albicans was evaluated in vitro. Two of the synthesized derivatives 5e (IC50 = 25 µg/mL) and 5m (IC50 = 6 µg/mL),displayed better antifungal and antibiofilm potential than the standard drug Fluconazole (IC50 = 40 µg/mL) against C. albicans. Based on the in vitro results, we escalated the real time polymerase chain reaction (RT-PCR) analysis to gain knowledge of the enzymes expressed in the generation and maintenance of biofilms and the mechanism of biofilm inhibition by the synthesized analogues. We then investigated the possible interactions of the synthesized compounds in inhibiting agglutinin-like proteins, namely Als3, Als4 and Als6 were prominently down-regulated using in-silico molecular docking analysis against the previously available crystal structure of Als3 and constructed structure of Als4 and Als6 using the SWISS-MODEL server. The stability and energy of the agglutinin-like proteins-ligand complexes were evaluated using molecular dynamics simulations (MDS). According to the 100 ns MDS, all the compounds remained stable, formed a maximum of 3, and on average 2 hydrogen bonds, and Gibb's free energy landscape analysis suggested greater affinity of the compounds 5e and 5m toward Als4 protein.Communicated by Ramaswamy H. Sarma.

7.
Microb Pathog ; 186: 106462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030019

RESUMO

To treat the systemic infections caused by Candida albicans (C. albicans), various drugs have been used, however, infections still persisted due to virulence factors and increasing antifungal resistance. As a solution to this problem, we synthesized selenium nanoparticles (SeNPs) by using Bacillus cereus bacteria. This is the first study to report a higher (70 %) reduction of selenite ions into SeNPs in under 6 h. The as-synthesized, biogenic SeNPs were used to deliver bioactive constituents of aqueous extract of ginger for inhibiting the growth and biofilm (virulence factors) in C. albicans. UV-visible spectroscopy revealed a characteristic absorption at 280 nm, and Raman spectroscopy showed a characteristic peak shift at 253 cm-1 for the biogenic SeNPs. The synthesized SeNPs are spherical with 240-250 nm in size as determined by electron microscopy. Fourier transform infrared spectroscopy confirmed the functionalization of antifungal constituents of ginger over the SeNPs (formation of Ginger@SeNPs nanoconjugates). In contrast to biogenic SeNPs, nanoconjugates were active against C. albicans for inhibiting growth and biofilm formation. In order to reveal antifungal mechanism of nanoconjugates', real-time polymerase chain reaction (RT-PCR) analysis was performed, according to RT-PCR analysis, the nanoconjugates target virulence genes involved in C. albicans hyphae and biofilm formation. Nanoconjugates inhibited 25 % growth of human embryonic kidney (HEK) 293 cell line, indicating moderate cytotoxicity of active nanoconjugates in an in-vitro cytotoxicity study. Therefore, biogenic SeNPs conjugated with ginger dietary extract may be a potential antifungal agent and drug carrier for inhibiting C. albicans growth and biofilm formation.


Assuntos
Bacillus , Nanopartículas , Selênio , Zingiber officinale , Humanos , Selênio/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candida albicans/metabolismo , Fatores de Virulência , Nanoconjugados , Células HEK293 , Nanopartículas/química , Bacillus/metabolismo , Biofilmes
8.
Heliyon ; 9(12): e23106, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149199

RESUMO

AgBi2S3, a copious and innocuous ternary metal chalcogenide affiliated with the I-V-IV group of semiconductors, was synthesized. With an energy gap of 1.2eV, it closely matches the optimal 1.39eV for solar cell absorbers. Importantly, this chalcogenide exhibits a high absorption coefficient of 105 cm-1 at 600 nm. Using the successive ionic layer adsorption and reaction (SILAR) method; we deposited an AgBi2S3 thin film onto a titanium dioxide (TiO2) thin film. Characterization techniques encompassed XRD, SEM, EDXS, UV-Vis, EIS, and PEC performance analyses. The resulting TiO2/AgBi2S3 composite film ranged in thickness from 8 µm to 13 µm, with particle sizes spanning 20 nm-265 nm. Notably, the deposition of AgBi2S3 onto the TiO2 film caused depreciation in the TiO2 energy gap from 3.1eV to 1.7eV. Furthermore, it significantly enhanced the TiO2 film's absorbance across the visible and near-infrared regions. Intriguingly, the TiO2/AgBi2S3 composite film also exhibited discernible photoelectrochemical behavior.

9.
Vet Q ; 43(1): 1-16, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916743

RESUMO

Tularemia caused by Gram-negative, coccobacillus bacterium, Francisella tularensis, is a highly infectious zoonotic disease. Human cases have been reported mainly from the United States, Nordic countries like Sweden and Finland, and some European and Asian countries. Naturally, the disease occurs in several vertebrates, particularly lagomorphs. Type A (subspecies tularensis) is more virulent and causes disease mainly in North America; type B (subspecies holarctica) is widespread, while subspecies mediasiatica is present in central Asia. F. tularensis is a possible bioweapon due to its lethality, low infectious dosage, and aerosol transmission. Small mammals like rabbits, hares, and muskrats are primary sources of human infections, but true reservoir of F. tularensis is unknown. Vector-borne tularemia primarily involves ticks and mosquitoes. The bacterial subspecies involved and mode of transmission determine the clinical picture. Early signs are flu-like illnesses that may evolve into different clinical forms of tularemia that may or may not include lymphadenopathy. Ulcero-glandular and glandular forms are acquired by arthropod bite or handling of infected animals, oculo-glandular form as a result of conjunctival infection, and oro-pharyngeal form by intake of contaminated food or water. Pulmonary form appears after inhalation of bacteria. Typhoidal form may occur after infection via different routes. Human-to-human transmission has not been known. Diagnosis can be achieved by serology, bacterial culture, and molecular methods. Treatment for tularemia typically entails use of quinolones, tetracyclines, or aminoglycosides. Preventive measures are necessary to avoid infection although difficult to implement. Research is underway for the development of effective live attenuated and subunit vaccines.


Assuntos
Francisella tularensis , Tularemia , Humanos , Animais , Coelhos , Tularemia/diagnóstico , Tularemia/epidemiologia , Tularemia/veterinária , Zoonoses/microbiologia , Antibacterianos , Mamíferos
10.
BMC Res Notes ; 16(1): 155, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491288

RESUMO

OBJECTIVES: The ability to form biofilm is considered as one of major virulence factors of Candida albicans, as biofilms form growth confers antifungal resistance and facilitate immune evasion. It is intriguing to understand morphophysiological modulations in the C. albicans cells growing under biofilm form growth. DATA DESCRIPTION: In present study, we have profiled biofilm-specific proteins using LC-MS/MS analysis. Whole cell proteins of C. albicans cells grown under biofilm form growth (test) and planktonic (control) growth for 24 h were extracted, digested and identified using micro-Liquid Chromatography-Mass Spectrometry (LC-MS/MS). The present data represents proteomic profile (SWATH Spectral Libraries) of C. albicans biofilm intended to be useful to scientific community as it exhibits reuse potential.


Assuntos
Antifúngicos , Candida albicans , Candida albicans/metabolismo , Antifúngicos/farmacologia , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Biofilmes , Testes de Sensibilidade Microbiana
11.
Med Mycol ; 61(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37385819

RESUMO

Candida albicans, a polymorphic opportunistic pathogen of humans, can exist in different morphological forms like yeast, hyphae, pseudohyphae, chlamydospores, and white and opaque cells. Proteomic analysis of opaque form of C. albicans ATCC 10231 is carried out in the present study using microflow liquid chromatography-tandem mass spectrometry and validated using expression analysis of selected genes using reverse transcription quantitative real-time PCR and mitochondrial membrane potential assay. This is the first report identifying opaque cell-specific proteins of C. albicans. A total of 188 proteins were significantly modulated under opaque form compared to white cells, of which 110 were upregulated, and 78 were downregulated. It was observed that oxidative phosphorylation (OxPhos) and oxidative stress are enhanced in C. albicans cells growing under opaque form as proteins involved in OxPhos (Atp1, Atp3, Atp16, Atp7, Cox6, Nuc2, Qcr7, and Sdh12) and oxidative stress response (Gcs1, Gtt11, Gpx2, Sod1, Ccp1, and Lys7) were significantly upregulated. The maximum upregulation of 23.16- and 13.93-fold is observed in the cases of Ccp1 and Nuc2, respectively. The downregulation of proteins, namely Als1, Csh1, Sap9, and Rho1, determining cell surface chemistry indicates modulation in cell wall integrity and reduced adhesion of opaque cells compared to white cells. This study is significant as it is the first draft of the proteomic profile of opaque cells that suggests enhanced OxPhos, oxidative stress, and modulation in cell surface chemistry indicating reduced adhesion and cell wall integrity, which could be associated with reduced virulence in opaque form. However, a deeper investigation is needed to explore it further.


Opaque form is one of the least studied morphological forms of Candida albicans. To the best of our knowledge, this is the first report providing opaque cell-specific proteome. It suggests enhanced oxidative phosphorylation, oxidative stress, and modulation in cell surface chemistry, which could be associated with reduced virulence in opaque form.


Assuntos
Candida albicans , Proteínas Fúngicas , Humanos , Animais , Candida albicans/genética , Proteínas Fúngicas/genética , Proteoma/genética , Proteoma/metabolismo , Proteômica , Fosforilação Oxidativa , Regulação Fúngica da Expressão Gênica
12.
Heliyon ; 9(4): e15339, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123899

RESUMO

Asparagus adscendens Roxb. also known as "safed musli" or "shatavari" is a medicinal plant commonly found in South Asian countries. Shatavari is effective for the treatment of gastric ulcers, renal stones, bronchitis, diabetes, diabetic neuropathy, irritable bowel syndrome, alcohol withdrawal and has reported immunostimulatory effects. In this study, the adjuvant potential of Shatavarin-IV saponin against Staphylococcus aureus bacterin in mice was investigated. Shatavarin-IV was evaluated for its toxicity and immunomodulatory potential against S. aureus bacterin in mice. Cellular and humoral immune responses were assessed. Shatavarin-IV was isolated from the fruit extract of Asparagus adscendens. The confirmation of the isolated molecule as Shatavarin-IV was done via TLC-based comparison with the standard molecule. Further, the structure was confirmed by using extensive spectroscopic analyses and comparing the observed data with literature reports. It was found safe up to the dose of 0.1 mg in the mice model. Shatavarin-IV adjuvant elicited IgG and IgG2b responses at the dose of 40 µg against S. aureus bacterin. However, the cell-mediated immune response was lesser as compared with the commercial Quil-A saponin . We demonstrated that Shatavarin-IV saponin adjuvant produced an optimum humoral immune response against S. aureus bacterin. These results highlight the potential of Shatavarin-IV as an adjuvant in a combination adjuvant in vaccine formulations for induction of potent immune response.

13.
RSC Adv ; 13(21): 14110-14118, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179991

RESUMO

Different concentrations of titanium oxide nanoparticles (TiO2NPs) have been frequently reported in treated wastewater used for the irrigation of crops. Luteolin is a susceptive anticancer flavonoid in many crops and rare medicinal plants that can be affected by exposure to TiO2NPs. This study investigates the potential transformation of pure luteolin in exposure to TiO2NP-containing water. In an in vitro system, three replicates of 5 mg L-1 of pure luteolin were exposed to TiO2NPs (0, 25, 50, 100 ppm). After 48 h exposure, the samples were extensively analyzed by Raman spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, and dynamic light scattering (DLS). A positive correlation was found between TiO2NPs concentrations and the structural alteration of luteolin content, where over 20% of luteolin structure was allegedly altered in the presence of 100 ppm TiO2NPs. The increase of NPs diameter (∼70 nm) and dominant peaks in Raman spectra revealed that luteolin was adsorbed onto the TiO2NPs surface. Further, the second-order derivative analysis confirmed the transformation of luteolin upon exposure to TiO2NPs. This study provides fundamental insight into agricultural safety measures when exposed to air or water-borne TiO2NPs.

14.
ACS Omega ; 8(8): 7779-7790, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872997

RESUMO

In this work, silver (Ag) doped zinc oxide (ZnO) nanoparticles were synthesized using zinc chloride, zinc nitrate, and zinc acetate precursors with (0 to 10) wt % Ag doping by a simple reflux chemical method. The nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet visible spectroscopy, and photoluminescence spectroscopy. The nanoparticles are studied as a photocatalyst for visible light driven annihilation of methylene blue and rose bengal dyes. The 5 wt % Ag doped ZnO displayed optimum photocatalytic activity toward methylene blue and rose bengal dye degradation at the rate of 13 × 10-2 min-1 and 10 × 10-2 min-1, respectively. Here we report antifungal activity for the first time using Ag doped ZnO nanoparticles against Bipolaris sorokiniana, displaying 45% efficiency for 7 wt % Ag doped ZnO.

15.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838823

RESUMO

In the present study, biogenic selenium nanoparticles (SeNPs) have been prepared using Paenibacillus terreus and functionalized with nystatin (SeNP@PVP_Nystatin nanoconjugates) for inhibiting growth, morphogenesis, and a biofilm in Candida albicans. Ultraviolet-visible spectroscopy analysis has shown a characteristic absorption at 289, 303, and 318 nm, and X-ray diffraction analysis has shown characteristic peaks at different 2θ values for SeNPs. Electron microscopy analysis has shown that biogenic SeNPs are spherical in shape with a size in the range of 220-240 nm. Fourier transform infrared spectroscopy has confirmed the functionalization of nystatin on SeNPs (formation of SeNP@PVP_Nystatin nanoconjugates), and the zeta potential has confirmed the negative charge on the nanoconjugates. Biogenic SeNPs are inactive; however, nanoconjugates have shown antifungal activities on C. albicans (inhibited growth, morphogenesis, and a biofilm). The molecular mechanism for the action of nanoconjugates via a real-time polymerase chain reaction has shown that genes involved in the RAS/cAMP/PKA signaling pathway play an important role in antifungal activity. In cytotoxic studies, nanoconjugates have inhibited only 12% growth of the human embryonic kidney cell line 293 cells, indicating that the nanocomposites are not cytotoxic. Thus, the biogenic SeNPs produced by P. terreus can be used as innovative and effective drug carriers to increase the antifungal activity of nystatin.


Assuntos
Nanopartículas , Selênio , Humanos , Antifúngicos/farmacologia , Nistatina/farmacologia , Selênio/química , Candida albicans , Nanoconjugados , Nanopartículas/química , Biofilmes
16.
Nanomicro Lett ; 15(1): 54, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36795339

RESUMO

Agro seeds are vulnerable to environmental stressors, adversely affecting seed vigor, crop growth, and crop productivity. Different agrochemical-based seed treatments enhance seed germination, but they can also cause damage to the environment; therefore, sustainable technologies such as nano-based agrochemicals are urgently needed. Nanoagrochemicals can reduce the dose-dependent toxicity of seed treatment, thereby improving seed viability and ensuring the controlled release of nanoagrochemical active ingredients However, the applications of nanoagrochemicals to plants in the field raise concerns about nanomaterial safety, exposure levels, and toxicological implications to the environment and human health. In the present comprehensive review, the development, scope, challenges, and risk assessments of nanoagrochemicals on seed treatment are discussed. Moreover, the implementation obstacles for nanoagrochemicals use in seed treatments, their commercialization potential, and the need for policy regulations to assess possible risks are also discussed. Based on our knowledge, this is the first time that we have presented legendary literature to readers in order to help them gain a deeper understanding of upcoming nanotechnologies that may enable the development of future generation seed treatment agrochemical formulations, their scope, and potential risks associated with seed treatment.

17.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835640

RESUMO

Silver nanoparticles (Ag-NPs) demonstrate unique properties and their use is exponentially increasing in various applications. The potential impact of Ag-NPs on human health is debatable in terms of toxicity. The present study deals with MTT(3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium-bromide) assay on Ag-NPs. We measured the cell activity resulting from molecules' mitochondrial cleavage through a spectrophotometer. The machine learning models Decision Tree (DT) and Random Forest (RF) were utilized to comprehend the relationship between the physical parameters of NPs and their cytotoxicity. The input features used for the machine learning were reducing agent, types of cell lines, exposure time, particle size, hydrodynamic diameter, zeta potential, wavelength, concentration, and cell viability. These parameters were extracted from the literature, segregated, and developed into a dataset in terms of cell viability and concentration of NPs. DT helped in classifying the parameters by applying threshold conditions. The same conditions were applied to RF to extort the predictions. K-means clustering was used on the dataset for comparison. The performance of the models was evaluated through regression metrics, viz. root mean square error (RMSE) and R2. The obtained high value of R2 and low value of RMSE denote an accurate prediction that could best fit the dataset. DT performed better than RF in predicting the toxicity parameter. We suggest using algorithms for optimizing and designing the synthesis of Ag-NPs in extended applications such as drug delivery and cancer treatments.


Assuntos
Nanopartículas Metálicas , Linhagem Celular , Aprendizado de Máquina , Nanopartículas Metálicas/toxicidade , Extratos Vegetais , Prata/toxicidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-36337581

RESUMO

Inclusion of Candida albicans in the list of pathogens with potential drug resistance threat in recent years has compelled scientists to explore novel and potent antifungal agents. In this study, we have evaluated anti-Candida potential of menthol against different growth forms and synergistic potential with fluconazole. Menthol inhibited planktonic growth of all the isolates completely at ≤3.58 mM and killed 99.9% inoculum at MIC, indicating that menthol is fungicidal. Menthol inhibited hyphal form growth completely at 0.62 mM. It has inhibited developing a biofilm by 79% at 3.58 mM, exhibiting excellent activity against recalcitrant biofilms. FIC index values of 0.182 and 0.093 indicate excellent synergistic activity between fluconazole and menthol against planktonic and biofilm growth, respectively. Menthol enhanced rate of OxPhos among 22% cells; arrested 71% cells at G2-M phase of cell cycle and induced apoptosis in 15% cells. Thus, menthol exhibits excellent anti-Candida activity against differentially susceptible isolates as well as various growth and morphological forms of C. albicans. Menthol affects membrane integrity thereby inducing oxidative stress followed by cell cycle arrest and apoptosis. Considering the excellent anti-Candida potential and as it is Generally Recognized as Safe by the Food and Drug Administration, it may find use in antifungal chemotherapy, alone or in combination.

19.
Reprod Biomed Online ; 45(5): 979-986, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987889

RESUMO

RESEARCH QUESTION: Does anti-Müllerian hormone (AMH) differ between healthy European and Indian women, and are potential ethnic differences modified by infertility diagnosis? DESIGN: Cross-sectional analysis of three prospectively recruited cohorts (n = 2758); healthy European women (n = 758), healthy community cohort from Kolhapur, India (n = 400) and infertility cohort from Kolhapur, India (n = 1600). AMH was determined by assay. Ethnicity, age and cause of infertility were modelled using additive quantile regression models. RESULTS: Healthy Indian women had lower AMH than their healthy European counterparts (population estimates 20.0% lower [95% CI 7.2-36.5]), with increasing discordance with increasing age; at 25 years AMH was 11.9% lower (95% CI 9.4-14.1), increasing to 40.0% lower (95% CI 0-64.6) by age 45. Comparison of healthy and infertile Indian women revealed differences that were related to cause of infertility. Women whose male partner had severe oligoasthenoteratozoospermia (n = 95) had similar AMH to controls; women with polycystic ovary syndrome (n = 220) had higher AMH, especially in those <30 years, and in women with a principal diagnosis of unexplained infertility (n = 757) AMH was lower (median difference 22.6% lower; 95% CI 9.1-37.7) than controls. CONCLUSIONS: AMH is substantially lower in healthy Indian women at all ages than their European counterparts. Infertile Indian women have variable differences in AMH from healthy Indian controls, with the extent and direction of differences primarily reflecting the underlying cause of infertility. Recognition of ethnic and cause-specific differences are critical to ensure accurate contextualizing of results and clinical outcomes for patients.


Assuntos
Infertilidade Feminina , Síndrome do Ovário Policístico , Feminino , Humanos , Pessoa de Meia-Idade , Hormônio Antimülleriano , Estudos Transversais , Etnicidade , Infertilidade Feminina/etnologia , Infertilidade Feminina/etiologia , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/etnologia , Índia
20.
J Proteomics ; 265: 104661, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35728770

RESUMO

Candida albicans biofilms are characterized by structural and cellular heterogeneity that confers antifungal resistance and immune evasion. Despite this, biofilm formation remains poorly understood. In this study, we used proteomic analysis to understand biofilm formation in C. albicans related to morphophysiological and architectural features. LC-MS/MS analysis revealed that 64 proteins were significantly modulated, of which 31 were upregulated and 33 were downregulated. The results indicate that metabolism (25 proteins), gene expression (13 proteins), stress response (7 proteins), and cell wall (5 proteins) composition are modulated. The rate of oxidative phosphorylation (OxPhos) and biosynthesis of UDP-N-acetylglucosamine, vitamin B6, and thiamine increased, while the rate of methionine biosynthesis decreased. There was a significant modification of the cell wall architecture due to higher levels of Sun41, Pir1 and Csh1 and increased glycosylation of proteins. It was observed that C. albicans induces hyphal growth by upregulating the expression of genes involved in cAMP-PKA and MAPK pathways. This study is significant in that it suggests an increase in OxPhos and alteration of cell wall architecture that could be contributing to the recalcitrance of C. albicans cells growing in biofilms. Nevertheless, a deeper investigation is needed to explore it further. SIGNIFICANCE: Candida sps is included in the list of pathogens with potential drug resistance threat due to the increased frequency especially colonization of medical devices, and tissues among the patients, in recent years. Significance of our study is that we are reporting traits like modulation in cell wall composition, amino acid and vitamin biosynthesis and importantly energy generation (OxPhos) etc. These traits could be conferring antifungal resistance, host immune evasion etc. and thus survival, in addition to facilitating biofilm formation. These findings are expected to prime the further studies on devising potent strategy against biofilm growth among the patients.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/farmacologia , Biofilmes , Candida albicans/metabolismo , Cromatografia Líquida , Proteínas Fúngicas/metabolismo , Humanos , Proteômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA