Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
2.
Cardiovasc Diabetol ; 23(1): 88, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424560

RESUMO

Type-2 diabetes (T2D) worsens stroke recovery, amplifying post-stroke disabilities. Currently, there are no therapies targeting this important clinical problem. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are potent anti-diabetic drugs that also efficiently reduce cardiovascular death and heart failure. In addition, SGLT2i facilitate several processes implicated in stroke recovery. However, the potential efficacy of SGLT2i to improve stroke recovery in T2D has not been investigated. Therefore, we determined whether a post-stroke intervention with the SGLT2i Empagliflozin could improve stroke recovery in T2D mice. T2D was induced in C57BL6J mice by 8 months of high-fat diet feeding. Hereafter, animals were subjected to transient middle cerebral artery occlusion and treated with vehicle or the SGLTi Empagliflozin (10 mg/kg/day) starting from 3 days after stroke. A similar study in non diabetic mice was also conducted. Stroke recovery was assessed using the forepaw grip strength test. To identify potential mechanisms involved in the Empagliflozin-mediated effects, several metabolic parameters were assessed. Additionally, neuronal survival, neuroinflammation, neurogenesis and cerebral vascularization were analyzed using immunohistochemistry/quantitative microscopy. Empagliflozin significantly improved stroke recovery in T2D but not in non-diabetic mice. Improvement of functional recovery was associated with lowered glycemia, increased serum levels of fibroblast growth factor-21 (FGF-21), and the normalization of T2D-induced aberration of parenchymal pericyte density. The global T2D-epidemic and the fact that T2D is a major risk factor for stroke are drastically increasing the number of people in need of efficacious therapies to improve stroke recovery. Our data provide a strong incentive for the potential use of SGLT2i for the treatment of post-stroke sequelae in T2D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Camundongos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico
3.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835405

RESUMO

Type 2 diabetes (T2D) impairs post-stroke recovery, and the underlying mechanisms are unknown. Insulin resistance (IR), a T2D hallmark that is also closely linked to aging, has been associated with impaired post-stroke recovery. However, whether IR worsens stroke recovery is unknown. We addressed this question in mouse models where early IR, with or without hyperglycemia, was induced by chronic high-fat diet feeding or sucrose supplementation in the drinking water, respectively. Furthermore, we used 10-month-old mice, spontaneously developing IR but not hyperglycemia, where IR was normalized pharmacologically pre-stroke with Rosiglitazone. Stroke was induced by transient middle cerebral artery occlusion and recovery was assessed by sensorimotor tests. Neuronal survival, neuroinflammation and the density of striatal cholinergic interneurons were also assessed by immunohistochemistry/quantitative microscopy. Pre-stroke induction and normalization of IR, respectively, worsened and improved post-stroke neurological recovery. Moreover, our data indicate a potential association of this impaired recovery with exacerbated neuroinflammation and a decreased density of striatal cholinergic interneurons. The global diabetes epidemic and population aging are dramatically increasing the percentage of people in need of post-stroke treatment/care. Our results suggest that future clinical studies should target pre-stroke IR to reduce stroke sequelae in both diabetics and elderly people with prediabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Acidente Vascular Cerebral , Camundongos , Animais , Doenças Neuroinflamatórias , Infarto da Artéria Cerebral Média
4.
Diabetes ; 72(3): 405-414, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448982

RESUMO

Microvascular pathology in the brain is one of the suggested mechanisms underlying the increased incidence and progression of neurodegenerative diseases in people with type 2 diabetes (T2D). Although accumulating data suggest a neuroprotective effect of antidiabetics, the underlying mechanisms are unclear. Here, we investigated whether two clinically used antidiabetics, the dipeptidyl peptidase-4 inhibitor linagliptin and the sulfonylurea glimepiride, which restore T2D-induced brain vascular pathology. Microvascular pathology was examined in the striatum of mice fed for 12 months with either normal chow diet or a high-fat diet (HFD) to induce T2D. A subgroup of HFD-fed mice was treated with either linagliptin or glimepiride for 3 months before sacrifice. We demonstrate that T2D caused leakage of the blood-brain barrier (BBB), induced angiogenesis, and reduced pericyte coverage of microvessels. However, linagliptin and glimepiride recovered the BBB integrity and restored the pericyte coverage differentially. Linagliptin normalized T2D-induced angiogenesis and restored pericyte coverage. In contrast, glimepiride enhanced T2D-induced angiogenesis and increased pericyte density, resulting in proper vascular coverage. Interestingly, glimepiride reduced microglial activation, increased microglial-vascular interaction, and increased collagen IV density. This study provides evidence that both DPP-4 inhibition and sulfonylurea reverse T2D-induced BBB leakage, which may contribute to antidiabetic neurorestorative effects.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Animais , Camundongos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Diabetes Mellitus Tipo 2/patologia , Linagliptina/farmacologia , Barreira Hematoencefálica/patologia , Pericitos/patologia , Hipoglicemiantes , Compostos de Sulfonilureia
5.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269761

RESUMO

Stress and negative emotions evoked by social relationships and working conditions, frequently accompanied by the consumption of addictive substances, and metabolic and/or genetic predispositions, negatively affect brain function. One of the affected structures is nucleus accumbens (NAc). Although its function is commonly known to be associated with brain reward responses and addiction, a growing body of evidence also suggests its role in some mental disorders, such as depression and schizophrenia, as well as neurodegenerative diseases, such as Alzheimer's, Huntington's, and Parkinson's. This may result from disintegration of the extensive connections based on numerous neurotransmitter systems, as well as impairment of some neuroplasticity mechanisms in the NAc. The consequences of NAc lesions are both morphological and functional. They include changes in the NAc's volume, cell number, modifications of the neuronal dendritic tree and dendritic spines, and changes in the number of synapses. Alterations in the synaptic plasticity affect the efficiency of synaptic transmission. Modification of the number and structure of the receptors affects signaling pathways, the content of neuromodulators (e.g., BDNF) and transcription factors (e.g., pCREB, DeltaFosB, NFκB), and gene expression. Interestingly, changes in the NAc often have a different character and intensity compared to the changes observed in the other parts of the basal ganglia, in particular the dorsal striatum. In this review, we highlight the role of the NAc in various pathological processes in the context of its structural and functional damage, impaired connections with the other brain areas cooperating within functional systems, and progression of the pathological processes.


Assuntos
Comportamento Aditivo , Transtornos Mentais , Doenças Neurodegenerativas , Humanos , Transtornos Mentais/etiologia , Transtornos Mentais/metabolismo , Doenças Neurodegenerativas/metabolismo , Núcleo Accumbens/metabolismo , Recompensa
6.
Br J Pharmacol ; 179(4): 677-694, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33973246

RESUMO

BACKGROUND AND PURPOSE: Glucagon-like peptide-1 (GLP-1) receptor activation decreases stroke risk in people with Type 2 diabetes (T2D), while animal studies have shown the efficacy of this strategy to counteract stroke-induced acute brain damage. However, whether GLP-1 receptor activation also improves recovery in the chronic phase after stroke is unknown. We investigated whether post-acute, chronic administration of the GLP-1 receptor agonist, exendin-4, improves post-stroke recovery and examined possible underlying mechanisms in T2D and non-T2D mice. EXPERIMENTAL APPROACH: We induced stroke via transient middle cerebral artery occlusion (tMCAO) in T2D/obese mice (8 months of high-fat diet) and age-matched controls. Exendin-4 was administered for 8 weeks from Day 3 post-tMCAO. We assessed functional recovery by weekly upper-limb grip strength tests. Insulin sensitivity and glycaemia were evaluated at 4 and 8 weeks post-tMCAO. Neuronal survival, stroke-induced neurogenesis, neuroinflammation, atrophy of GABAergic parvalbumin+ interneurons, post-stroke vascular remodelling and fibrotic scar formation were investigated by immunohistochemistry. KEY RESULTS: Exendin-4 normalised T2D-induced impairment of forepaw grip strength recovery in correlation with normalised glycaemia and insulin sensitivity. Moreover, exendin-4 counteracted T2D-induced atrophy of parvalbumin+ interneurons and decreased microglia activation. Finally, exendin-4 normalised density and pericyte coverage of micro-vessels and restored fibrotic scar formation in T2D mice. In non-T2D mice, the exendin-4-mediated recovery was minor. CONCLUSION AND IMPLICATIONS: Chronic GLP-1 receptor activation mediates post-stroke functional recovery in T2D mice by normalising glucose metabolism and improving neuroplasticity and vascular remodelling in the recovery phase. The results warrant clinical trial of GLP-1 receptor agonists for rehabilitation after stroke in T2D. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Acidente Vascular Cerebral , Animais , Atrofia , Glicemia , Cicatriz , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exenatida/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos , Parvalbuminas/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Remodelação Vascular
7.
Cell Mol Neurobiol ; 42(6): 1995-2002, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33811589

RESUMO

Glucagon-like peptide-1 (GLP-1) is a peripheral incretin and centrally active peptide produced in the intestine and nucleus tractus solitarii (NTS), respectively. GLP-1 not only regulates metabolism but also improves cognition and is neuroprotective. While intestinal GLP-1-producing cells have been well characterized, less is known about GLP-1-producing neurons in NTS. We hypothesized that obesity-induced type 2 diabetes (T2D) impairs the function of NTS GLP-1-producing neurons and glycemia normalization counteracts this effect. We used immunohistochemistry/quantitative microscopy to investigate the number, potential atrophy, and activation (cFos-expression based) of NTS GLP-1-producing neurons, in non-diabetic versus obese/T2D mice (after 12 months of high-fat diet). NTS neuroinflammation was also assessed. The same parameters were quantified in obese/T2D mice treated from month 9 to 12 with two unrelated anti-hyperglycemic drugs: the dipeptidyl peptidase-4 inhibitor linagliptin and the sulfonylurea glimepiride. We show no effect of T2D on the number and volume but increased activation of NTS GLP-1-producing neurons. This effect was partially normalized by both anti-diabetic treatments, concurrent with decreased neuroinflammation. Increased activation of NTS GLP-1-producing neurons could represent an aberrant metabolic demand in T2D/obesity, attenuated by glycemia normalization. Whether this effect represents a pathophysiological process preceding GLP-1 signaling impairment in the CNS, remains to be investigated.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Camundongos , Neurônios/metabolismo , Obesidade/tratamento farmacológico , Núcleo Solitário/metabolismo
8.
Cardiovasc Diabetol ; 20(1): 240, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937562

RESUMO

BACKGROUND: Post-stroke functional recovery is severely impaired by type 2 diabetes (T2D). This is an important clinical problem since T2D is one of the most common diseases. Because weight loss-based strategies have been shown to decrease stroke risk in people with T2D, we aimed to investigate whether diet-induced weight loss can also improve post-stroke functional recovery and identify some of the underlying mechanisms. METHODS: T2D/obesity was induced by 6 months of high-fat diet (HFD). Weight loss was achieved by a short- or long-term dietary change, replacing HFD with standard diet for 2 or 4 months, respectively. Stroke was induced by middle cerebral artery occlusion and post-stroke recovery was assessed by sensorimotor tests. Mechanisms involved in neurovascular damage in the post-stroke recovery phase, i.e. neuroinflammation, impaired angiogenesis and cellular atrophy of GABAergic parvalbumin (PV)+ interneurons were assessed by immunohistochemistry/quantitative microscopy. RESULTS: Both short- and long-term dietary change led to similar weight loss. However, only the latter enhanced functional recovery after stroke. This effect was associated with pre-stroke normalization of fasting glucose and insulin resistance, and with the reduction of T2D-induced cellular atrophy of PV+ interneurons. Moreover, stroke recovery was associated with decreased T2D-induced neuroinflammation and reduced astrocyte reactivity in the contralateral striatum. CONCLUSION: The global diabetes epidemic will dramatically increase the number of people in need of post-stroke treatment and care. Our results suggest that diet-induced weight loss leading to pre-stroke normalization of glucose metabolism has great potential to reduce the sequelae of stroke in the diabetic population.


Assuntos
Glicemia/metabolismo , Encéfalo/fisiopatologia , Diabetes Mellitus Tipo 2/dietoterapia , Infarto da Artéria Cerebral Média/dietoterapia , Obesidade/dietoterapia , Acidente Vascular Cerebral/dietoterapia , Redução de Peso , Animais , Comportamento Animal , Biomarcadores/sangue , Encéfalo/metabolismo , Encéfalo/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Controle Glicêmico , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/fisiopatologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo
9.
Cardiovasc Diabetol ; 20(1): 202, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615525

RESUMO

BACKGROUND AND AIMS: Insulin resistance contributes to the development of type 2 diabetes (T2D) and is also a cardiovascular risk factor. The aim of this study was to investigate the potential association between insulin resistance measured by estimated glucose disposal rate (eGDR) and risk of stroke and mortality thereof in people with T2D. MATERIALS AND METHODS: Nationwide population based observational cohort study that included all T2D patients from the Swedish national diabetes registry between 2004 and 2016 with full data on eGDR and categorised as following: < 4, 4-6, 6-8, and ≥ 8 mg/kg/min. We calculated crude incidence rates and 95% confidence intervals (CIs) and used multiple Cox regression to estimate hazard ratios (HRs) to assess the association between the risk of stroke and death, according to the eGDR categories in which the lowest category < 4 (i.e., highest grade of insulin resistance), served as a reference. The relative importance attributed of each factor in the eGDR formula was measured by the R2 (± SE) values calculating the explainable log-likelihoods in the Cox regression. RESULTS: A total of 104 697 T2D individuals, 44.5% women, mean age of 63 years, were included. During a median follow up-time of 5.6 years, 4201 strokes occurred (4.0%). After multivariate adjustment the HRs (95% CI) for stroke in patients with eGDR categories between 4-6, 6-8 and > 8 were: 0.77 (0.69-0.87), 0.68 (0.58-0.80) and 0.60 (0.48-0.76), compared to the reference < 4. Corresponding numbers for the risk of death were: 0.82 (0.70-0.94), 0.75 (0.64-0.88) and 0.68 (0.53-0.89). The attributed relative risk R2 (± SE) for each variable in the eGDR formula and stroke was for: hypertension (0.045 ± 0.0024), HbA1c (0.013 ± 0.0014), and waist (0.006 ± 0.0009), respectively. CONCLUSION: A low eGDR (a measure of insulin resistance) is associated with an increased risk of stroke and death in individuals with T2D. The relative attributed risk was most important for hypertension.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Resistência à Insulina , Acidente Vascular Cerebral/epidemiologia , Idoso , Biomarcadores/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/mortalidade , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Hipertensão/epidemiologia , Incidência , Masculino , Pessoa de Meia-Idade , Prognóstico , Sistema de Registros , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/mortalidade , Suécia/epidemiologia , Fatores de Tempo
10.
Biosci Rep ; 41(6)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34008839

RESUMO

Inflammation plays a central role in stroke-induced brain injury. The alpha7 nicotinic acetylcholine receptor (α7nAChR) can modulate immune responses in both the periphery and the brain. The aims of the present study were to investigate α7nAChR expression in different brain regions and evaluate the potential effect of the selective α7nAChR agonist AR-R17779 on ischemia-reperfusion brain injury in mice. Droplet digital PCR (ddPCR) was used to evaluate the absolute expression of the gene encoding α7nAChR (Chrna7) in hippocampus, striatum, thalamus and cortex in adult, naïve mice. Mice subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery were treated with α7nAChR agonist AR-R17779 (12 mg/kg) or saline once daily for 5 days. Infarct size and microglial activation 7 days after tMCAO were analyzed using immunohistochemistry. Chrna7 expression was found in all analyzed brain regions in naïve mice with the highest expression in cortex and hippocampus. At sacrifice, white blood cell count was significantly decreased in AR-R17779 treated mice compared with saline controls in the sham groups, although, no effect was seen in the tMCAO groups. Brain injury and microglial activation were evident 7 days after tMCAO. However, no difference was found between mice treated with saline or AR-R17779. In conclusion, α7nAChR expression varies in different brain regions and, despite a decrease in white blood cells in sham mice receiving AR-R17779, this compound does not affect stroke-induced brain injury.


Assuntos
Encéfalo/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Agonistas Nicotínicos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Compostos de Espiro/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
11.
Cell Mol Neurobiol ; 41(3): 591-603, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32447613

RESUMO

Type 2 diabetes (T2D) hampers recovery after stroke, but the underling mechanisms are mostly unknown. In a recently published study (Pintana et al. in Clin Sci (Lond) 133(13):1367-1386, 2019), we showed that impaired recovery in T2D was associated with persistent atrophy of parvalbumin+ interneurons in the damaged striatum. In the current work, which is an extension of the abovementioned study, we investigated whether somatostatin (SOM)+ interneurons are also affected by T2D during the stroke recovery phase. C57Bl/6j mice were fed with high-fat diet or standard diet (SD) for 12 months and subjected to 30-min transient middle cerebral artery occlusion (tMCAO). SOM+ cell number/density in the striatum was assessed by immunohistochemistry 2 and 6 weeks after tMCAO in peri-infarct and infarct areas. This was possible by establishing a computer-based quantification method that compensates the post-stroke tissue deformation and the irregular cell distribution. SOM+ interneurons largely survived the stroke as seen at 2 weeks. Remarkably, 6 weeks after stroke, the number of SOM+ interneurons increased (vs. contralateral striatum) in SD-fed mice in both peri-infarct and infarct areas. However, this increase did not result from neurogenesis. T2D completely abolished this effect specifically in the in the infarct area. The results suggest that the up-regulation of SOM expression in the post-stroke phase could be related to neurological recovery and T2D could inhibit this process. We also present a new and precise method for cell counting in the stroke-damaged striatum that allows to reveal accurate, area-related effects of stroke on cell number.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Inibição Neural , Neurônios/patologia , Recuperação de Função Fisiológica , Somatostatina/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Infarto da Artéria Cerebral Média/complicações , Interneurônios/patologia , Masculino , Camundongos Endogâmicos C57BL , Neostriado/patologia , Neostriado/fisiopatologia , Neurogênese , Neuroglia/metabolismo , Neurônios/metabolismo
12.
ACS Chem Neurosci ; 11(21): 3590-3602, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33054173

RESUMO

Olfactory dysfunction could be an early indicator of cognitive decline in type 2 diabetes (T2D). However, whether obesity affects olfaction in people with T2D is unclear. This question needs to be addressed, because most people with T2D are obese. Importantly, whether different contributing factors leading to obesity (e.g., different components of diet or gain in weight) affect specific olfactory functions and underlying mechanisms is unknown. We examined whether two T2D-inducing obesogenic diets, one containing a high proportion of fat (HFD) and one with moderate fat and high sugar (Western diet, WD), affect odor detection/discrimination, odor-related learning, and olfactory memory in the mouse. We also investigated whether the diets impair adult neurogenesis, GABAergic interneurons, and neuroblasts in the olfactory system. Here, we further assessed olfactory cortex volume and cFos expression-based neuronal activity. The WD-fed mice showed declined odor-related learning and olfactory memory already after 3 months of diet intake (p = 0.046), although both diets induced similar hyperglycemia and weight gain compared to those of standard diet-fed mice (p = 0.0001 and p < 0.0001, respectively) at this time point. Eight months of HFD and WD diminished odor detection (p = 0.016 and p = 0.045, respectively), odor-related learning (p = 0.015 and p = 0.049, respectively), and olfactory memory. We observed no changes in the investigated cellular mechanisms. We show that the early deterioration of olfactory parameters related to learning and memory is associated with a high content of sugar in the diet rather than with hyperglycemia or weight gain. This finding could be exploited for understanding, and potentially preventing, cognitive decline/dementia in people with T2D. The mechanisms behind this finding remain to be elucidated.


Assuntos
Diabetes Mellitus Tipo 2 , Olfato , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Memória , Camundongos , Odorantes
13.
Diabetes ; 69(9): 1961-1973, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32540876

RESUMO

The interplay between obesity and type 2 diabetes (T2D) in poststroke recovery is unclear. Moreover, the impact of glucose control during the chronic phase after stroke is undetermined. We investigated whether obesity-induced T2D impairs neurological recovery after stroke by using a clinically relevant experimental design. We also investigated the potential efficacy of two clinically used T2D drugs: the dipeptidyl peptidase 4 inhibitor linagliptin and the sulfonylurea glimepiride. We induced transient middle cerebral artery occlusion (tMCAO) in T2D/obese mice (after 7 months of high-fat diet [HFD]) and age-matched controls. After stroke, we replaced HFD with standard diet for 8 weeks to mimic the poststroke clinical situation. Linagliptin or glimepiride were administered daily from 3 days after tMCAO for 8 weeks. We assessed neurological recovery weekly by upper-limb grip strength. Brain damage, neuroinflammation, stroke-induced neurogenesis, and atrophy of parvalbumin-positive (PV+) interneurons were quantified by immunohistochemistry. T2D/obesity impaired poststroke neurological recovery in association with hyperglycemia, neuroinflammation, and atrophy of PV+ interneurons. Both drugs counteracted these effects. In nondiabetic mice, only linagliptin accelerated recovery. These findings shed light on the interplay between obesity and T2D in stroke recovery. Moreover, they promote the use of rehabilitative strategies that are based on efficacious glycemia regulation, even if initiated days after stroke.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 2/complicações , Infarto da Artéria Cerebral Média/complicações , Obesidade/complicações , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/complicações , Animais , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta , Modelos Animais de Doenças , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/tratamento farmacológico , Linagliptina/farmacologia , Linagliptina/uso terapêutico , Masculino , Camundongos , Obesidade/sangue , Obesidade/tratamento farmacológico , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/tratamento farmacológico , Compostos de Sulfonilureia/farmacologia , Compostos de Sulfonilureia/uso terapêutico , Resultado do Tratamento
14.
Neurobiol Aging ; 89: 12-23, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32143981

RESUMO

The nigrostriatal dopaminergic system (NDS) controls motor activity, and its impairment during type 2 diabetes (T2D) progression could increase Parkinson's disease risk in diabetics. If so, whether glycemia regulation prevents this impairment needs to be addressed. We investigated whether T2D impairs the NDS and whether dipeptidyl peptidase-4 inhibition (DPP-4i; a clinical strategy against T2D but also neuroprotective in animal models) prevents this effect, in middle-aged mice. Neither T2D (induced by 12 months of high-fat diet) nor aging (14 months) changed striatal dopamine content assessed by high-performance liquid chromatography. However, T2D reduced basal and amphetamine-stimulated striatal extracellular dopamine, assessed by microdialysis. Both the DPP-4i linagliptin and the sulfonylurea glimepiride (an antidiabetic comparator unrelated to DPP-4i) counteracted these effects. The functional T2D-induced effects did not correlate with NDS neuronal/glial alterations. However, aging itself affected striatal neurons/glia, and the glia effects were counteracted mainly by DPP-4i. These findings show NDS functional pathophysiology in T2D and suggest the preventive use of two unrelated anti-T2D drugs. Moreover, DPP-4i counteracted striatal age-related glial alterations suggesting striatal rejuvenation properties.


Assuntos
Envelhecimento/metabolismo , Corpo Estriado/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Dopamina/metabolismo , Linagliptina/farmacologia , Substância Negra/metabolismo , Compostos de Sulfonilureia/farmacologia , Animais , Diabetes Mellitus Tipo 2/complicações , Progressão da Doença , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , Risco
15.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31919522

RESUMO

Adult neurogenesis, the production of newborn neurons from neural stem cells (NSCs) has been suggested to be decreased in patients with schizophrenia. A similar finding was observed in an animal model of schizophrenia, as indicated by decreased bromodeoxyuridine (BrdU) labelling cells in response to a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist. The antipsychotic drug clozapine was shown to counteract the observed decrease in BrdU-labelled cells in hippocampal dentate gyrus (DG). However, phenotypic determination by immunohistochemistry analysis could not reveal whether BrdU-positive cells were indeed NSCs. Using a previously established cell model for analysing NSC protection in vitro, we investigated a protective effect of clozapine on NSCs. Primary NSCs were isolated from the mouse subventricular zone (SVZ), we show that clozapine had a NSC protective activity alone, as evident by employing an ATP cell viability assay. In contrast, haloperidol did not show any NSC protective properties. Subsequently, cells were exposed to the non-competitive NMDA-receptor antagonist ketamine. Clozapine, but not haloperidol, had a NSC protective/anti-apoptotic activity against ketamine-induced cytotoxicity. The observed NSC protective activity of clozapine was associated with increased expression of the anti-apoptotic marker Bcl-2, decreased expression of the pro-apoptotic cleaved form of caspase-3 and associated with decreased expression of the autophagosome marker 1A/1B-light chain 3 (LC3-II). Collectively, our findings suggest that clozapine may have a protective/anti-apoptotic effect on NSCs, supporting previous in vivo observations, indicating a neurogenesis-promoting activity for clozapine. If the data are further confirmed in vivo, the results may encourage an expanded use of clozapine to restore impaired neurogenesis in schizophrenia.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Clozapina/farmacologia , Antagonistas de Aminoácidos Excitatórios/toxicidade , Ketamina/toxicidade , Ventrículos Laterais/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Animais , Caspase 3/metabolismo , Células Cultivadas , Haloperidol/farmacologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais
16.
Diabetes Obes Metab ; 22(2): 182-190, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31576643

RESUMO

AIMS: To compare stroke incidence in people with type 2 diabetes (T2D) with that in a matched control group, and to investigate whether glucose exposure in people with T2D can predict a first-time stroke event and mortality. MATERIAL AND METHODS: In a nationwide observational cohort study, individuals with T2D were linked in the Swedish National Diabetes Register and matched with five individual population-based control subjects. We calculated crude incidence rates and 95% confidence intervals (CIs), and used Cox regression and multivariable hazard ratios (HRs), to estimate the risk of stroke and mortality in relation to glycated haemoglobin (HbA1c) levels. RESULTS: A total of 406 271 people with T2D (age 64.1 ± 12.4 years, 45.7% women) and 2086 440 control subjects (age 64.0 ± 12.4 years, 45.7% women) were included. During a median follow-up of 7.3 years, 26 380 people with T2D (6.5%) versus 92 375 control subjects (4.4%) were diagnosed with a stroke. The incidence rate was 10.12 events per 1000 person-years versus 7.26 events per 1000 person-years (HR 1.54, 95% CI 1.52-1.56). In the T2D group after multivariable adjustments, the HRs for stroke stratified by HbA1c level were: 54-64 mmol/mol: 1.27 (95% CI 1.22-1.32); 65-75 mmol/mol: 1.68 (95% CI 1.60-1.76); 76-86 mmol/mol: 1.89 (95% CI, 1.75-2.05); and > 87 mmol/mol: 2.14 (95% CI 1.90-2.42), respectively, compared with the reference category of HbA1c ≤53 mmol/mol. There was a stepwise increased risk of death after stroke, for every 10-mmol/mol categorical increment of HbA1c (HR 1.71; 95% CI 1.47-2.00) for the highest HbA1c category. CONCLUSIONS: An increased risk of stroke and death was associated with poor glycaemic control in people with T2D.


Assuntos
Glicemia/fisiologia , Diabetes Mellitus Tipo 2/complicações , Angiopatias Diabéticas/etiologia , Acidente Vascular Cerebral/etiologia , Idoso , Glicemia/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Angiopatias Diabéticas/sangue , Angiopatias Diabéticas/epidemiologia , Feminino , Controle Glicêmico , Fatores de Risco de Doenças Cardíacas , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Fatores de Risco , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/epidemiologia , Suécia/epidemiologia
17.
Alzheimers Dement ; 16(2): 316-325, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31718906

RESUMO

INTRODUCTION: The effect of comorbid cardiometabolic diseases (CMDs), including diabetes, heart diseases, and stroke, on dementia remains unclear. METHODS: A cohort of 2648 dementia-free adults aged ≥60 years was followed up for 12 years. An active lifestyle was defined in accordance with the engagement in leisure activities and/or a social network. Cox models were used in data analysis. RESULTS: The multiadjusted hazard ratio (HR, 95% confidence interval) of dementia was 1.41 (1.07-1.86) for one, 2.38 (1.58-3.59) for two, and 4.76 (2.04-11.13) for three CMDs. In joint exposure analysis, the HR of dementia was 3.36 (2.14-5.30) for participants with CMDs plus an inactive lifestyle and 1.32 (0.95-1.84) for those with CMDs plus an active lifestyle (reference: no CMDs plus active lifestyle). An active lifestyle delayed dementia onset by 3.50 years in people with CMDs. DISCUSSION: CMDs, especially when comorbid, are associated with increased dementia risk; however, leisure activities and social integration mitigate this risk.


Assuntos
Doenças Cardiovasculares/epidemiologia , Demência , Atividades de Lazer , Integração Social , Idoso , China/epidemiologia , Estudos de Coortes , Comorbidade , Demência/diagnóstico , Demência/epidemiologia , Diabetes Mellitus/diagnóstico , Feminino , Humanos , Atividades de Lazer/psicologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico
18.
Acta Neurol Scand ; 140(6): 443-448, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31518433

RESUMO

OBJECTIVES: Hyperglycemia is a predictor for poor stroke outcome. Hyperglycemic stroke patients treated with thrombolysis have an increased risk of intracranial hemorrhage. Insulin is the gold standard for treating hyperglycemia but comes with a risk of hypoglycemia. Glucagon-like peptide-1 receptor agonists (GLP-1RA) are drugs used in type 2 diabetes that have a low risk of hypoglycemia and have been shown to exert neuroprotective effects. The primary objective was to determine whether prehospital administration of the GLP-1RA exenatide could lower plasma glucose in stroke patients. Secondary objective was to study tolerability and safety. MATERIALS & METHODS: Randomized controlled trial comparing exenatide administrated prehospitally with a control group receiving standard care for hyperglycemia. Patients with Face Arm Speech Test ≥1 and glucose ≥8 mmol/L were randomized. Glucose was monitored for 24 hours. All adverse events were recorded. RESULTS: Nineteen patients were randomized, eight received exenatide. An interim recruitment failure analysis with subsequent changes of the protocol was made. The study was stopped prematurely due to slow inclusion. No difference was observed in the main outcome of plasma glucose at 4 hours, control vs exenatide (mean, SD); 7.0 ± 1.9 vs 7.6 ± 1.6; P = .56). No major adverse events were reported. CONCLUSIONS: We found no evidence that prehospital exenatide had effect on hyperglycemia. However, it was given without adverse events in this study with limited sample size that was prematurely stopped due to slow inclusion.


Assuntos
Glicemia/efeitos dos fármacos , Exenatida/administração & dosagem , Hiperglicemia/prevenção & controle , Hipoglicemiantes/administração & dosagem , Acidente Vascular Cerebral/sangue , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Hiperglicemia/complicações , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/complicações
19.
Cardiovasc Diabetol ; 18(1): 91, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307484

RESUMO

BACKGROUND: Glucagon-like peptide-1 (GLP-1) treatment has been shown to reduce stroke incidence in diabetes and also to be neuroprotective in experimental stroke models. The prognostic value of endogenous levels of GLP-1 in the recovery phase after stroke remains to be elucidated. The aim of the study was to investigate the potential association between GLP-1 levels and functional outcome after stroke and to determine whether GLP-1 is altered in the acute phase of stroke compared to 3 months post stroke and to healthy controls. METHODS: Fasting GLP-1 was measured on hospital day 2-4 in patients without previously known diabetes (n = 59) that received recombinant tissue plasminogen activator (rtPA) for ischemic stroke. Fasting GLP-1 was measured again after 3 months and neurologic outcome was measured as modified Rankin Scale (mRS). mRS ≥ 2 was considered as unfavorable outcome. A control group of healthy individuals (n = 27) was recruited and their fasting GLP-1 was measured. RESULTS: Fasting GLP-1 was higher in the patients that suffered a stroke compared to healthy controls (25.1 vs. 18.0 pmol/L; p = 0.004). The GLP-1 levels did not change significantly at the 3-month follow up OGTT (25.8 vs. 25.6; p = 0.80). There was no significant association between GLP-1 levels and unfavorable mRS (OR 1.03, 95% CI 0.95-1.12, p = 0.50). CONCLUSIONS: Endogenous GLP-1 levels in patients that recently suffered an ischemic stroke are higher than in healthy controls and remained unchanged at the 3 months follow-up, possibly indicating an elevation of the levels of GLP-1 already pre-stroke. However, no association between endogenous GLP-1 and functional outcome of stroke 3 months post stroke was found.


Assuntos
Isquemia Encefálica/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Acidente Vascular Cerebral/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/fisiopatologia , Estudos de Casos e Controles , Avaliação da Deficiência , Feminino , Fibrinolíticos/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/fisiopatologia , Terapia Trombolítica , Fatores de Tempo , Ativador de Plasminogênio Tecidual/uso terapêutico , Regulação para Cima
20.
Clin Sci (Lond) ; 133(13): 1367-1386, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31235555

RESUMO

Type 2 diabetes (T2D) hampers stroke recovery though largely undetermined mechanisms. Few preclinical studies have investigated the effect of genetic/toxin-induced diabetes on long-term stroke recovery. However, the effects of obesity-induced T2D are mostly unknown. We aimed to investigate whether obesity-induced T2D worsens long-term stroke recovery through the impairment of brain's self-repair mechanisms - stroke-induced neurogenesis and parvalbumin (PV)+ interneurons-mediated neuroplasticity. To mimic obesity-induced T2D in the middle-age, C57bl/6j mice were fed 12 months with high-fat diet (HFD) and subjected to transient middle cerebral artery occlusion (tMCAO). We evaluated neurological recovery by upper-limb grip strength at 1 and 6 weeks after tMCAO. Gray and white matter damage, stroke-induced neurogenesis, and survival and potential atrophy of PV-interneurons were quantitated by immunohistochemistry (IHC) at 2 and 6 weeks after tMCAO. Obesity/T2D impaired neurological function without exacerbating brain damage. Moreover, obesity/T2D diminished stroke-induced neural stem cell (NSC) proliferation and neuroblast formation in striatum and hippocampus at 2 weeks after tMCAO and abolished stroke-induced neurogenesis in hippocampus at 6 weeks. Finally, stroke resulted in the atrophy of surviving PV-interneurons 2 weeks after stroke in both non-diabetic and obese/T2D mice. However, after 6 weeks, this effect selectively persisted in obese/T2D mice. We show in a preclinical setting of clinical relevance that obesity/T2D impairs neurological functions in the stroke recovery phase in correlation with reduced neurogenesis and persistent atrophy of PV-interneurons, suggesting impaired neuroplasticity. These findings shed light on the mechanisms behind impaired stroke recovery in T2D and could facilitate the development of new stroke rehabilitative strategies for obese/T2D patients.


Assuntos
Encéfalo/fisiopatologia , Diabetes Mellitus Tipo 2/etiologia , Infarto da Artéria Cerebral Média/complicações , Interneurônios/patologia , Degeneração Neural , Neurogênese , Obesidade/complicações , Parvalbuminas/metabolismo , Fatores Etários , Animais , Atrofia , Encéfalo/metabolismo , Encéfalo/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Inibição Neural , Recuperação de Função Fisiológica , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA