Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Small Methods ; : e2301610, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693080

RESUMO

Single impurities in insulators are now often used for quantum sensors and single photon sources, while nanoscale semiconductor doping features are being constructed for electrical contacts in quantum technology devices, implying that new methods for sensitive, non-destructive imaging of single- or few-atom structures are needed. X-ray fluorescence (XRF) can provide nanoscale imaging with chemical specificity, and features comprising as few as 100 000 atoms have been detected without any need for specialized or destructive sample preparation. Presently, the ultimate limits of sensitivity of XRF are unknown - here, gallium dopants in silicon are investigated using a high brilliance, synchrotron source collimated to a small spot. It is demonstrated that with a single-pixel integration time of 1 s, the sensitivity is sufficient to identify a single isolated feature of only 3000 Ga impurities (a mass of just 350 zg). With increased integration (25 s), 650 impurities can be detected. The results are quantified using a calibration sample consisting of precisely controlled numbers of implanted atoms in nanometer-sized structures. The results show that such features can now be mapped quantitatively when calibration samples are used, and suggest that, in the near future, planned upgrades to XRF facilities might achieve single-atom sensitivity.

2.
Nanoscale ; 16(11): 5760-5767, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412012

RESUMO

Magnetic nanomaterials are sought to provide new functionalities for applications ranging from information processing and storage to energy generation and biomedical imaging. MXenes are a rapidly growing family of two-dimensional transition metal carbides and nitrides with versatile chemical and structural diversity, resulting in a variety of interesting electronic and optical properties. However, strategies for producing MXenes with tailored magnetic responses remain underdeveloped and challenging. Herein, we incorporate elemental Ni and Co into Ti3C2Tx MXene by mixing with dilute metal chloride solutions. We achieve a uniform distribution of Ni and Co, confirmed by X-ray fluorescence (XRF) mapping with nanometer resolution, with Ni and Co concentrations of approximately 2 and 7 at% relative to the Ti concentration. The magnetic susceptibility of these Ni- and Co-incorporated Ti3C2Tx MXenes is one to two orders of magnitude larger than pristine Ti3C2Tx, illustrating the potential for dilute metal incorporation to enhance linear magnetic responses at room temperature.

3.
J Chem Phys ; 159(15)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37862110

RESUMO

Bond-orientational order in DNA-assembled nanoparticles lattices is explored with the help of recently introduced Symmetry-specific Bond Order Parameters (SymBOPs). This approach provides a more sensitive analysis of local order than traditional scalar BOPs, facilitating the identification of coherent domains at the single bond level. The present study expands the method initially developed for assemblies of anisotropic particles to the isotropic ones or cases where particle orientation information is unavailable. The SymBOP analysis was applied to experiments on DNA-frame-based assembly of nanoparticle lattices. It proved highly sensitive in identifying coherent crystalline domains with different orientations, as well as detecting topological defects, such as dislocations. Furthermore, the analysis distinguishes individual sublattices within a single crystalline domain, such as pair of interpenetrating FCC lattices within a cubic diamond. The results underscore the versatility and robustness of SymBOPs in characterizing ordering phenomena, making them valuable tools for investigating structural properties in various systems.


Assuntos
DNA , Nanopartículas , DNA/química , Nanopartículas/química , Anisotropia
4.
iScience ; 26(10): 107932, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790277

RESUMO

Tomography experiments generate three-dimensional (3D) reconstructed slices from a series of two-dimensional (2D) projection images. However, the mechanical system generates joint offsets that result in unaligned 2D projections. This misalignment affects the reconstructed images and reduces their actual spatial resolution. In this study, we present a novel method called outer contour-based misalignment correction (OCMC) for correcting image misalignments in tomography. We use the sample's outer contour structure as auxiliary information to estimate the extent of misalignment in each image. This method is generic and can be used with various tomography imaging techniques. We validated our method with five datasets collected from different samples and across various tomography techniques. The OCMC method demonstrated significant advantages in terms alignment accuracy and time efficiency. As an end-to-end correction method, OCMC can be easily integrated into an online tomography data processing pipeline and facilitate feedback control in future synchrotron tomography experiments.

5.
Environ Sci Nano ; 10(7): 1768-1777, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37457049

RESUMO

Coal combustion byproducts are known to be enriched in arsenic (As) and selenium (Se). This enrichment is a concern during the handling, disposal, and reuse of the ash as both elements can be harmful to wildlife and humans if mobilized into water and soils. The leaching potential and bioaccessibility of As and Se in coal fly ash depends on the chemical forms of these elements and their association with the large variety of particles that comprise coal fly ash. The overall goal of this research was to determine nanoscale and microscale solid phase mineral associations and oxidation states of As and Se in fly ash. We utilized nanoscale 2D imaging (30-50 nm spot size) with the Hard X-ray Nanoprobe (HXN) in combination with microprobe X-ray capabilities (∼5 µm resolution) to determine the As and Se elemental associations. Speciation of As and Se was also measured at the nano- to microscale with X-ray absorption spectroscopy. The enhanced resolution of HXN showed As and Se as either diffusely located around or comingled with Ca- and Fe-rich particles. The results also showed nanoparticles of Se attached to the surface of fly ash grains. Overall, a comparison of As and Se species across scales highlights the heterogeneity and complexity of chemical associations for these trace elements of concern in coal fly ash.

6.
Metallomics ; 14(10)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36208212

RESUMO

Understanding the nanoscale chemical speciation of heterogeneous systems in their native environment is critical for several disciplines such as life and environmental sciences, biogeochemistry, and materials science. Synchrotron-based X-ray spectromicroscopy tools are widely used to understand the chemistry and morphology of complex material systems owing to their high penetration depth and sensitivity. The multidimensional (4D+) structure of spectromicroscopy data poses visualization and data-reduction challenges. This paper reports the strategies for the visualization and analysis of spectromicroscopy data. We created a new graphical user interface and data analysis platform named XMIDAS (X-ray multimodal image data analysis software) to visualize spectromicroscopy data from both image and spectrum representations. The interactive data analysis toolkit combined conventional analysis methods with well-established machine learning classification algorithms (e.g. nonnegative matrix factorization) for data reduction. The data visualization and analysis methodologies were then defined and optimized using a model particle aggregate with known chemical composition. Nanoprobe-based X-ray fluorescence (nano-XRF) and X-ray absorption near edge structure (nano-XANES) spectromicroscopy techniques were used to probe elemental and chemical state information of the aggregate sample. We illustrated the complete chemical speciation methodology of the model particle by using XMIDAS. Next, we demonstrated the application of this approach in detecting and characterizing nanoparticles associated with alveolar macrophages. Our multimodal approach combining nano-XRF, nano-XANES, and differential phase-contrast imaging efficiently visualizes the chemistry of localized nanostructure with the morphology. We believe that the optimized data-reduction strategies and tool development will facilitate the analysis of complex biological and environmental samples using X-ray spectromicroscopy techniques.


Assuntos
Nanopartículas , Nanoestruturas , Raios X , Software , Algoritmos
7.
Environ Sci Technol ; 56(11): 7006-7016, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35235749

RESUMO

Particulate matter (PM) air pollution poses a major global health risk, but the role of iron (Fe) is not clearly defined because chemistry at the particle-cell interface is often not considered. Detailed spectromicroscopy characterizations of PM2.5 samples from the San Joaquin Valley, CA identified major Fe-bearing components and estimated their relative proportions. Iron in ambient PM2.5 was present in spatially and temporally variable mixtures, mostly as Fe(III) oxides and phyllosilicates, but with significant fractions of metallic iron (Fe(0)), Fe(II,III) oxide, and Fe(III) bonded to organic carbon. Fe(0) was present as aggregated, nm-sized particles that comprised up to ∼30% of the Fe spectral fraction. Mixtures reflect anthropogenic and geogenic particles subjected to environmental weathering, but reduced Fe in PM originates from anthropogenic sources, likely as abrasion products. Possible mechanistic pathways involving Fe(0) particles and mixtures of Fe(II) and Fe(III) surface species may generate hydrogen peroxide and oxygen-centered radical species (hydroxyl, hydroperoxyl, or superoxide) in Fenton-type reactions. From a health perspective, PM mixtures with reduced and oxidized Fe will have a disproportionate effect in cellular response after inhalation because of their tendency to shuttle electrons and produce oxidants and electrophiles that induce inflammation and oxidative stress.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Ferro , Material Particulado/análise , Espécies Reativas de Oxigênio
8.
J Mater Chem B ; 9(40): 8451-8463, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545909

RESUMO

Simultaneous exfoliation of crystalline α-zirconium phosphate (α-ZrP) nanosheets and enzyme binding, induced by shearing, without the addition of any toxic additives is reported here for the first time. These materials were thoroughly characterized and used for applications. The bulk α-ZrP material (20 mg mL-1) was exfoliated with low concentrations of a protein such as bovine serum albumin (BSA, 3 mg mL-1) in a shear reactor at 10k rpm for <80 minutes. Exfoliation was monitored by powder X-ray diffraction with samples displaying a gradual but complete loss of the 7.6 Å (002) peak, which is characteristic of bulk α-ZrP. The fully exfoliated sample loaded with the protein was characterized by transmission and scanning electron microscopy in addition to other biophysical methods. Lysozyme, glucose oxidase, met-hemoglobin, and ovalbumin also induced exfoliation and directly produced enzyme/ZrP biocatalysts. Thus, exfoliation, biophilization and enzyme binding are accomplished in a single step. Several factors contributed to the exfoliation kinetics, and the rate increased with α-ZrP and BSA concentrations and decreased with pH. However, the exfoliation efficiency inversely depended on the isoelectric point of the protein with ovalbumin (pI = 4.5) being the best and lysozyme (pI = 11.1) being the worst. A strong correlation between the protein size and exfoliation efficiency was noted, and the latter suggests the role of hydrodynamic factors in the process. Exfoliation was also achieved by simple stirring using a magnetic stirrer, under low volumes, and model enzymes, indicating 60-90% retention of bound enzymatic activities. The addition of BSA to enzymes as the diluent and stabilizing agent also prevents enzymes from the denaturing effect caused by stirring. This new method requires no pre-treatment of α-ZrP with toxic exfoliating agents such as tetrabutyl ammonium hydroxide and provides bioactive enzyme/inorganic materials in a single step. These protein-loaded biocompatible nanosheets may be useful for biocatalysis and biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Enzimas/metabolismo , Zircônio/química , Enzimas/química , Concentração de Íons de Hidrogênio , Nanoestruturas , Soroalbumina Bovina/química , Resistência ao Cisalhamento , Difração de Raios X
9.
Nanoscale ; 13(42): 17725-17736, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34515717

RESUMO

Thin-film solid-state interfacial dealloying (thin-film SSID) is an emerging technique to design nanoarchitecture thin films. The resulting controllable 3D bicontinuous nanostructure is promising for a range of applications including catalysis, sensing, and energy storage. Using a multiscale microscopy approach, we combine X-ray and electron nano-tomography to demonstrate that besides dense bicontinuous nanocomposites, thin-film SSID can create a very fine (5-15 nm) nanoporous structure. Not only is such a fine feature among one of the finest fabrications by metal-agent dealloying, but a multilayer thin-film design enables creating nanoporous films on a wider range of substrates for functional applications. Through multimodal synchrotron diffraction and spectroscopy analysis with which the materials' chemical and structural evolution in this novel approach is characterized in details, we further deduce that the contribution of change in entropy should be considered to explain the phase evolution in metal-agent dealloying, in addition to the commonly used enthalpy term in prior studies. The discussion is an important step leading towards better explaining the underlying design principles for controllable 3D nanoarchitecture, as well as exploring a wider range of elemental and substrate selections for new applications.

10.
Nat Commun ; 12(1): 2350, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879789

RESUMO

High-nickel content cathode materials offer high energy density. However, the structural and surface instability may cause poor capacity retention and thermal stability of them. To circumvent this problem, nickel concentration-gradient materials have been developed to enhance high-nickel content cathode materials' thermal and cycling stability. Even though promising, the fundamental mechanism of the nickel concentration gradient's stabilization effect remains elusive because it is inseparable from nickel's valence gradient effect. To isolate nickel's valence gradient effect and understand its fundamental stabilization mechanism, we design and synthesize a LiNi0.8Mn0.1Co0.1O2 material that is compositionally uniform and has a hierarchical valence gradient. The nickel valence gradient material shows superior cycling and thermal stability than the conventional one. The result suggests creating an oxidation state gradient that hides the more capacitive but less stable Ni3+ away from the secondary particle surfaces is a viable principle towards the optimization of high-nickel content cathode materials.

11.
Atmos Environ (1994) ; 2452021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33223923

RESUMO

The speciation, oxidation states, and relative abundance of iron (Fe) phases in PM2.5 samples from two locations in urban Los Angeles were investigated using a combination of bulk and spatially resolved, element-specific spectroscopy and microscopy methods. Synchrotron X-ray absorption spectroscopy (XAS) of bulk samples in situ (i.e., without extraction or digestion) was used to quantify the relative fractions of major Fe phases, which were corroborated by spatially resolved spectro-microscopy measurements. Ferrihydrite (amorphous Fe(III)-hydroxide) comprised the largest Fe fraction (34-52%), with hematite (α-Fe2O3; 13-23%) and magnetite (Fe3O4; 10-24%) identified as major crystalline oxide components. An Fe-bearing phyllosilicate fraction (16-23%) was fit best with a reference spectrum of a natural illite/smectite mineral, and metallic Fe(0) was a relatively small (2-6%) but easily identified component. Sizes, morphologies, oxidation state, and trace element compositions of Fe-bearing PM from electron microscopy, electron energy loss spectroscopy (EELS), and scanning transmission X-ray microscopy (STXM) revealed variable and heterogeneous mixtures of Fe species and phases, often associated with carbonaceous material with evidence of surface oxidation. Ferrihydrite (or related Fe(III) hydroxide phases) was ubiquitous in PM samples. It forms as an oxidation or surface alteration product of crystalline Fe phases, and also occurs as coatings or nanoparticles dispersed with other phases as a result of environmental dissolution and re-precipitation reactions. The prevalence of ferrihydrite (and adsorbed Fe(III) has likely been underestimated in studies of ambient PM because it is non-crystalline, non-magnetic, more soluble than crystalline phases, and found in complex mixtures. Review of potential sources of different particle types suggests that the majority of Fe-bearing PM from these urban sites originates from anthropogenic activities, primarily abrasion products from vehicle braking systems and engine emissions from combustion and/or wear. These variable mixtures have a high probability for electron transfer reactions between Fe, redox-active metals such as copper, and reactive carbon species such as quinones. Our findings suggest the need to assess biological responses of specific Fe-bearing phases both individually and in combination to unravel mechanisms of adverse health effects of particulate Fe.

12.
Optica ; 7(5): 410-416, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33294496

RESUMO

Fresnel zone plates are widely used for x-ray nanofocusing, due to their ease of alignment and energy tunability. Their spatial resolution is limited in part by their outermost zone width dr N , while their efficiency is limited in part by their thickness t zp. We demonstrate the use of Fresnel zone plate optics for x-ray nanofocusing with dr N = 16 nm outermost zone width and a thickness of about t zp = 1.8 µm (or an aspect ratio of 110) with an absolute focusing efficiency of 4.7% at 12 keV, and 6.2% at 10 keV. Using partially coherent illumination at 12 keV, the zone plate delivered a FWHM focus of 46 × 60 nm at 12 keV, with the first order coherent mode in a ptychographic reconstruction showing a probe size of 16 nm FWHM. These optics were fabricated using a combination of metal assisted chemical etching and atomic layer deposition for the diffracting structures, and silicon wafer back-thinning to produce optics useful for real applications. This approach should enable new higher resolution views of thick materials, especially when energy tunability is required.

13.
Opt Express ; 28(12): 17660-17671, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679971

RESUMO

We report on the development of 2D integrated multilayer Laue lens (MLL) nanofocusing optics used for high-resolution x-ray microscopy. A Micro-Electro-Mechanical-Systems (MEMS) - based template has been designed and fabricated to accommodate two linear MLL optics in pre-aligned configuration. The orthogonality requirement between two MLLs has been satisfied to a better than 6 millidegrees level, and the separation along the x-ray beam direction was controlled on a micrometer scale. Developed planar 2D MLL structure has demonstrated astigmatism free point focus of ∼14 nm by ∼13 nm in horizontal and vertical directions, respectively, at 13.6 keV photon energy. Approaching 10 nm resolution with integrated 2D MLL optic is a significant step forward in applications of multilayer Laue lenses for high-resolution hard x-ray microscopy and their adoption by the general x-ray microscopy community.

14.
Environ Sci Process Impacts ; 21(3): 548-563, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30702742

RESUMO

Carbonaceous nanomaterials represent a significant portion of ultra-fine airborne particulate matter, and iron is the most abundant transition metal in air particles. Owing to their high surface area and atmospheric oxidation, carbon nanoparticles (CNP) are enriched with surface carbonyl functional groups and act as a host for metals and small molecules. Using a synthetic model, concentration-dependent changes in the chemical speciation of iron adsorbed on oxidized carbon surfaces were investigated by a combination of X-ray and electron microscopic and spectroscopic methods. Carbon K-edge absorption spectra demonstrated that the CNP surface was enriched with carboxylic acid groups after chemical oxidation but that microporosity was unchanged. Oxidized CNP showed a high affinity for sorption of Fe(iii) from solution (75-95% uptake) and spectroscopic measurements confirmed a 3+ oxidation state of Fe on CNP irrespective of surface loading. The bonding of adsorbed Fe(iii) at variable loadings was determined by iron K-edge X-ray absorption spectroscopy. At low loadings (3 and 10 µmol Fe m-2 CNP), mononuclear Fe was octahedrally coordinated to oxygen atoms of carboxylate groups. As Fe surface coverage increased (21 and 31 µmol Fe m-2 CNP), Fe-Fe backscatters were observed at interatomic distances indicating iron (oxy)hydroxide particle formation on CNP. Electron-donating surface carboxylate groups on CNP coordinated and stabilized mononuclear Fe(iii). Saturation of high-affinity sites may have promoted hydroxide particle nucleation at higher loading, demonstrating that the chemical form of reactive metal ions may change with surface concentration and degree of CNP surface oxidation. Model systems such as those discussed here, with controlled surface properties and known chemical speciation of adsorbed metals, are needed to establish structure-activity models for toxicity assessments of environmentally relevant nanoparticles.


Assuntos
Carbono/química , Compostos Férricos/análise , Nanopartículas/química , Material Particulado/química , Adsorção , Ácidos Carboxílicos/química , Elétrons , Modelos Teóricos , Nanopartículas/ultraestrutura , Oxirredução , Oxigênio/química , Tamanho da Partícula , Propriedades de Superfície
15.
Langmuir ; 34(1): 480-491, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29228779

RESUMO

Using glucose oxidase (GOx) and α-Zr(IV) phosphate nanoplates (α-ZrP) as a model system, a generally applicable approach to control enzyme-solid interactions via chemical modification of amino acid side chains of the enzyme is demonstrated. Net charge on GOx was systematically tuned by appending different amounts of polyamine to the protein surface to produce chemically modified GOx(n), where n is the net charge on the enzyme after the modification and ranged from -62 to +95 electrostatic units in the system. The binding of GOx(n) with α-ZrP nanosheets was studied by isothermal titration calorimetry (ITC) as well as by surface plasmon resonance (SPR) spectroscopy. Pristine GOx showed no affinity for the α-ZrP nanosheets, but GOx(n) where n ≥ -20 showed binding affinities exceeding (2.1 ± 0.6) × 106 M-1, resulting from the charge modification of the enzyme. A plot of GOx(n) charge vs Gibbs free energy of binding (ΔG) for n = +20 to n = +65 indicated an overall increase in favorable interaction between GOx(n) and α-ZrP nanosheets. However, ΔG is less dependent on the net charge for n > +45, as evidenced by the decrease in the slope as charge increased further. All modified enzyme samples and enzyme/α-ZrP complexes retained a significant amount of folding structure (examined by circular dichroism) as well as enzymatic activities. Thus, strong control over enzyme-nanosheet interactions via modulating the net charge of enzymes may find potential applications in biosensing and biocatalysis.


Assuntos
Glucose Oxidase/química , Nanoestruturas/química , Zircônio/química , Aspergillus niger/enzimologia , Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Etildimetilaminopropil Carbodi-Imida/química , Glucose Oxidase/metabolismo , Trientina/química
16.
Langmuir ; 33(49): 14184-14194, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29144756

RESUMO

Liquid phase exfoliation of graphite in six different animal sera and evaluation of its toxicity are reported here. Previously, we reported the exfoliation of graphene using proteins, and here we extend this approach to complex animal fluids. A kitchen blender with a high-turbulence flow gave high quality and maximum exfoliation efficiency in all sera tested, when compared to the values found with shear and ultrasonication methods. Raman spectra and electron microscopy confirmed the formation of three- or four-layer, submicrometer size graphene, independent of the serum used. Graphene prepared in serum was directly transferred to cell culture media without post-treatments. Contrary to many reports, a nanotoxicity study of this graphene fully dispersed to human embryonic kidney cells, human lung cancer cells, and nematodes (Caenorhabditis elegans) showed no acute toxicity for up to 7 days at various doses (50-500 µg/mL), but prolonged exposure at higher doses (300-500 µg/mL, 10-15 days) showed cytotoxicity to cells (∼95% death) and reproductive toxicity to C. elegans (5-10% reduction in brood size). The origin of toxicity was found to be due to the highly fragmented smaller graphene sheets (<200 nm), while the larger sheets were nontoxic (50-300 µg/mL dose). In contrast, graphene produced with sodium cholate as the mediator has been found to be cytotoxic to these cells at these dosages. We demonstrated the toxicity of liquid phase exfoliated graphene is attributed to highly fragmented fractions or nonbiocompatible exfoliating agents. Thus, low-toxicity graphene/serum suspensions are produced by a facile method in biological media, and this approach may accelerate the much-anticipated development of graphene for biological applications.


Assuntos
Grafite/química , Animais , Caenorhabditis elegans , Humanos , Oxirredução , Soro
17.
Adv Energy Mater ; 7(17)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-29104523

RESUMO

Nearly all implantable bioelectronics are powered by bulky batteries which limit device miniaturization and lifespan. Moreover, batteries contain toxic materials and electrolytes that can be dangerous if leakage occurs. Herein, an approach to fabricate implantable protein-based bioelectrochemical capacitors (bECs) employing new nanocomposite heterostructures in which 2D reduced graphene oxide sheets are interlayered with chemically modified mammalian proteins, while utilizing biological fluids as electrolytes is described. This protein-modified reduced graphene oxide nanocomposite material shows no toxicity to mouse embryo fibroblasts and COS-7 cell cultures at a high concentration of 1600 µg mL-1 which is 160 times higher than those used in bECs, unlike the unmodified graphene oxide which caused toxic cell damage even at low doses of 10 µg mL-1. The bEC devices are 1 µm thick, fully flexible, and have high energy density comparable to that of lithium thin film batteries. COS-7 cell culture is not affected by long-term exposure to encapsulated bECs over 4 d of continuous charge/discharge cycles. These bECs are unique, protein-based devices, use serum as electrolyte, and have the potential to power a new generation of long-life, miniaturized implantable devices.

18.
ACS Appl Mater Interfaces ; 9(49): 42556-42565, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29140073

RESUMO

Higher loading of enzymes on electrodes and efficient electron transfer from the enzyme to the electrode are urgently needed to enhance the current density of biofuel cells. The two-dimensional nature of the electrode surface limits the enzyme loading on the surface, and unfavorable interactions with electrode surfaces cause inactivation of the enzyme. Benign biohydrogels are designed here to address enzyme degradation, and the three-dimensional nature of the biohydrogel enhanced the enzyme density per unit area. A general strategy is demonstrated here using a redox active enzyme glucose oxidase embedded in a bovine serum albumin biohydrogel on flexible carbon cloth electrodes. In the presence of ferricyanide as a mediator, this bioelectrode generated a maximum current density (jmax) of 13.2 mA·cm-2 at 0.45 V in the presence of glucose with a sensitivity of 67 µA·mol-1·cm-2 and a half-life of >2 weeks at room temperature. A strong correlation of current density with water uptake by the biohydrogel was observed. Moreover, a soluble mediator (sodium ferricyanide) in the biohydrogel enhanced the current density by ∼1000-fold, and citrate-phosphate buffer has been found to be the best to achieve the maximum current density. A record 2.2% of the loaded enzyme was electroactive, which is greater than the highest value reported (2-fold). Stabilization of the enzyme in the biohydrogel resulted in retention of the enzymatic activity over a wide range of pH (4.0-8.0). We showed here that biohydrogels are excellent media for enzymatic electron transfer reactions required for bioelectronics and biofuel cell applications.

19.
J Phys Chem B ; 120(46): 11880-11887, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27792341

RESUMO

An artificial histone is synthesized that functions as a DNA-protein digital switch, where DNA binding is all or none, controlled by a sharp threshold of protein charge. A non-DNA-binding protein, glucose oxidase (GOx), was chemically modified by attaching an increasing number of triethylenetetramine (TETA) side chains to its glutamate/aspartate groups to obtain a small library of covalently modified GOx(n) derivatives. The parameter n denotes the net charge on the protein at pH 7, which was increased from -62 (pristine GOx) to +75 by attaching an increasing number of TETA residues to the protein. All GOx(n) derivatives retained their secondary structure to a good extent, as monitored by UV circular dichroism (CD) spectroscopy, and they also retained oxidase activities to a significant extent. The interaction of the GOx(n) with calf thymus DNA was examined by isothermal titration calorimetry (ITC). Pristine GOx of -62 charge at pH 7 in 10 mM Tris-HCl and 50 mM NaCl buffer had no affinity for the negatively charged DNA helix, and GOx(n) with n < +30 had no affinity for DNA either. However, binding has been turned on abruptly when n ≥ +30 with binding constants (Kb) ranging from (1.5 ± 0.7) × 107 to (7.3 ± 2.8) × 107 M-1 for n values of +30 and +75, respectively, and this type of "all-or-none" binding based on protein charge is intriguing. Furthermore, thermodynamic analysis of the titration data revealed that binding is entirely entropy-driven with ΔS ranging from 0.09 ± 0.007 to 0.19 ± 0.008 kcal/mol K with enthalpic penalties of 17.0 ± 2.3 and 46.1 ± 2.1 kcal/mol, respectively. The binding had intrinsic propensities (ΔG) ranging from -9.8 ± 0.14 to -10.7 ± 0.25 kcal/mol, independent of n. DNA binding distorted protein-DNA secondary structure, as evidenced by CD spectroscopy, but oxidase activity of GOx(n)/DNA complexes has been unaffected. This is the very first example of an artificial histone (GOx(n)) where the protein charge functioned as a DNA-binding switch; protein charge is in turn under complete chemical control while preserving the biological activity of the protein. The new insight gained here could be useful in the design of novel "on-off" protein switches.


Assuntos
DNA/metabolismo , Glucose Oxidase/metabolismo , Histonas/metabolismo , Animais , Bovinos , DNA/química , Eletroforese em Gel de Ágar , Glucose Oxidase/química , Histonas/química , Eletricidade Estática , Termodinâmica
20.
RSC Adv ; 5(73): 59364-59372, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26257893

RESUMO

The influence of oxidative debris (OD) present in as-prepared graphene oxide (GO) suspensions on proteins and its toxicity to human embryonic kidney cells (HEK-293T) are reported here. The OD was removed by repeated washing with aqueous ammonia to produce the corresponding base-washed GO (bwGO). The loading (w/w) of bovine serum albumin (BSA) was increased by 85% after base washing, whereas the loading of hemoglobin (Hb) and lysozyme (Lyz), respectively, was decreased by 160% and 100%. The secondary structures of 13 different proteins bound to bwGO were compared with the corresponding proteins bound to GO using the UV circular dichroism spectroscopy. There was a consistent loss of protein secondary structure with bwGO when compared with proteins bound to GO, but no correlation between either the isoelectric point or hydrophobicity of the protein and the extent of structure loss was observed. All enzymes bound to bwGO and GO indicated significant activities, and a strong correlation between the enzymatic activity and the extent of structure retention was noted, regardless of the presence or absence of OD. At low loadings (<100 µg/mL) both GO and bwGO showed excellent cell viability but substantial cytotoxicity (~40% cell death) was observed at high loadings (>100 µg/mL). In control studies, OD by itself did not alter the growth rate even after a 48-h incubation. Thus, the presence of OD in GO played a very important role in controlling the chemical and biological nature of the protein-GO interface and the presence of OD in GO improved its biological compatibility when compared to bwGO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA