Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 11(14)2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35883657

RESUMO

Dopamine and other neurotransmitters have the potential to induce neuroplasticity in the striatum via gene regulation. Dopamine receptor-mediated gene regulation relies on second messenger cascades that involve cyclic nucleotides to relay signaling from the synapse to the nucleus. Phosphodiesterases (PDEs) catalyze cyclic nucleotides and thus potently control cyclic nucleotide signaling. We investigated the role of the most abundant striatal PDE, PDE10A, in striatal gene regulation by assessing the effects of PDE10A inhibition (by a selective PDE10A inhibitor, TP-10) on gene regulation and by comparing the basal expression of PDE10A mRNA throughout the striatum with gene induction by dopamine agonists in the intact or dopamine-depleted striatum. Our findings show that PDE10A expression is most abundant in the sensorimotor striatum, intermediate in the associative striatum and lower in the limbic striatum. The inhibition of PDE10A produced pronounced increases in gene expression that were directly related to levels of local PDE10A expression. Moreover, the gene expression induced by L-DOPA after dopamine depletion (by 6-OHDA), or by psychostimulants (cocaine, methylphenidate) in the intact striatum, was also positively correlated with the levels of local PDE10A expression. This relationship was found for gene markers of both D1 receptor- and D2 receptor-expressing striatal projection neurons. Collectively, these results indicate that PDE10A, a vital part of the dopamine receptor-associated second messenger machinery, is tightly linked to drug-induced gene regulation in the striatum. PDE10A may thus serve as a potential target for modifying drug-induced gene regulation and related neuroplasticity.


Assuntos
Agonistas de Dopamina , Dopamina , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Expressão Gênica , Nucleotídeos Cíclicos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Receptores de Dopamina D1/metabolismo
2.
Mol Neurobiol ; 57(2): 736-751, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31468338

RESUMO

Dopamine and serotonin in the basal ganglia interact in a bidirectional manner. On the one hand, serotonin (5-HT) receptors regulate the effects of dopamine agonists on several levels, ranging from molecular signaling to behavior. These interactions include 5-HT receptor-mediated facilitation of dopamine receptor-induced gene regulation in striatal output pathways, which involves the 5-HT1B receptor and others. Conversely, there is evidence that dopamine action by psychostimulants regulates 5-HT1B receptor expression in the striatum. To further investigate the effects of dopamine and agonists on 5-HT receptors, we assessed the expression of 5-HT1B and other serotonin receptor subtypes in the striatum after unilateral dopamine depletion by 6-OHDA and subsequent treatment with L-DOPA (5 mg/kg; 4 weeks). Neither dopamine depletion nor L-DOPA treatment produced significant changes in 5-HT2C, 5-HT4, or 5-HT6 receptor expression in the striatum. In contrast, the 6-OHDA lesion caused a (modest) increase in 5-HT1B mRNA levels throughout the striatum. Moreover, repeated L-DOPA treatment markedly further elevated 5-HT1B expression in the dopamine-depleted striatum, an effect that was most robust in the sensorimotor striatum. A minor L-DOPA-induced increase in 5-HT1B expression was also seen in the intact striatum. These changes in 5-HT1B expression mimicked changes in the expression of neuropeptide markers (dynorphin, enkephalin mRNA) in striatal projection neurons. After repeated L-DOPA treatment, the severity of L-DOPA-induced dyskinesias and turning behavior was positively correlated with the increase in 5-HT1B expression in the associative, but not sensorimotor, striatum ipsilateral to the lesion, suggesting that associative striatal 5-HT1B receptors may play a role in L-DOPA-induced behavioral abnormalities.


Assuntos
Corpo Estriado/metabolismo , Dopamina/deficiência , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/efeitos adversos , Receptor 5-HT1B de Serotonina/metabolismo , Animais , Comportamento Animal , Dinorfinas/metabolismo , Discinesia Induzida por Medicamentos/genética , Discinesia Induzida por Medicamentos/patologia , Encefalinas/metabolismo , Regulação da Expressão Gênica , Masculino , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA