Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Commun ; 12(1): 1239, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623010

RESUMO

One of the main challenges in ultrafast material science is to trigger phase transitions with short pulses of light. Here we show how strain waves, launched by electronic and structural precursor phenomena, determine a coherent macroscopic transformation pathway for the semiconducting-to-metal transition in bistable Ti3O5 nanocrystals. Employing femtosecond powder X-ray diffraction, we measure the lattice deformation in the phase transition as a function of time. We monitor the early intra-cell distortion around the light absorbing metal dimer and the long range deformations governed by acoustic waves propagating from the laser-exposed Ti3O5 surface. We developed a simplified elastic model demonstrating that picosecond switching in nanocrystals happens concomitantly with the propagating acoustic wavefront, several decades faster than thermal processes governed by heat diffusion.

2.
Nat Commun ; 9(1): 5394, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30568161

RESUMO

One-dimensional (1D) magnetic insulators have attracted significant interest as a platform for studying quasiparticle fractionalization, quantum criticality, and emergent phenomena. The spin-1/2 Heisenberg chain with antiferromagnetic nearest neighbour interactions is an important reference system; its elementary magnetic excitations are spin-1/2 quasiparticles called spinons that are created in even numbers. However, while the excitation continuum associated with two-spinon states is routinely observed, the study of four-spinon and higher multi-spinon states is an open area of research. Here we show that four-spinon excitations can be accessed directly in Sr2CuO3 using resonant inelastic x-ray scattering (RIXS) in a region of phase space clearly separated from the two-spinon continuum. Our finding is made possible by the fundamental differences in the correlation function probed by RIXS in comparison to other probes. This advance holds promise as a tool in the search for novel quantum states and quantum spin liquids.

3.
Nano Lett ; 17(4): 2561-2567, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28282495

RESUMO

Engineering the electronic band structure of two-dimensional electron liquids (2DELs) confined at the surface or interface of transition metal oxides is key to unlocking their full potential. Here we describe a new approach to tailoring the electronic structure of an oxide surface 2DEL demonstrating the lateral modulation of electronic states with atomic scale precision on an unprecedented length scale comparable to the Fermi wavelength. To this end, we use pulsed laser deposition to grow anatase TiO2 films terminated by a (1 × 4) in-plane surface reconstruction. Employing photostimulated chemical surface doping we induce 2DELs with tunable carrier densities that are confined within a few TiO2 layers below the surface. Subsequent in situ angle-resolved photoemission experiments demonstrate that the (1 × 4) surface reconstruction provides a periodic lateral perturbation of the electron liquid. This causes strong backfolding of the electronic bands, opening of unidirectional gaps and a saddle point singularity in the density of states near the chemical potential.

4.
Phys Rev Lett ; 117(9): 097001, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610876

RESUMO

In the studies of iron pnictides, a key question is whether their bad-metal state from which the superconductivity emerges lies in close proximity with a magnetically ordered insulating phase. Recently, it was found that at low temperatures, the heavily Cu-doped NaFe_{1-x}Cu_{x}As (x>0.3) iron pnictide is an insulator with long-range antiferromagnetic order, similar to the parent compound of cuprates but distinct from all other iron pnictides. Using angle-resolved photoemission spectroscopy, we determined the momentum-resolved electronic structure of NaFe_{1-x}Cu_{x}As (x=0.44) and identified that its ground state is a narrow-gap insulator. Combining the experimental results with density functional theory (DFT) and DFT+U calculations, our analysis reveals that the on-site Coulombic (Hubbard) and Hund's coupling energies play crucial roles in the formation of the band gap about the chemical potential. We propose that at finite temperatures, charge carriers are thermally excited from the Cu-As-like valence band into the conduction band, which is of Fe 3d-like character. With increasing temperature, the number of electrons in the conduction band becomes larger and the hopping energy between Fe sites increases, and finally the long-range antiferromagnetic order is destroyed at T>T_{N}. Our study provides a basis for investigating the evolution of the electronic structure of a Mott insulator transforming into a bad metallic phase and eventually forming a superconducting state in iron pnictides.

5.
Nat Mater ; 15(6): 601-5, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27159018

RESUMO

Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.


Assuntos
Irídio/química , Campos Magnéticos , Simulação de Dinâmica Molecular , Estrôncio/química , Supercondutividade
6.
Phys Rev Lett ; 113(8): 086801, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25192117

RESUMO

Using angle-resolved photoemission spectroscopy, we show that the recently discovered surface state on SrTiO(3) consists of nondegenerate t(2g) states with different dimensional characters. While the d(xy) bands have quasi-2D dispersions with weak k(z) dependence, the lifted d(xz)/d(yz) bands show 3D dispersions that differ significantly from bulk expectations and signal that electrons associated with those orbitals permeate the near-surface region. Like their more 2D counterparts, the size and character of the d(xz)/d(yz) Fermi surface components are essentially the same for different sample preparations. Irradiating SrTiO(3) in ultrahigh vacuum is one method observed so far to induce the "universal" surface metallic state. We reveal that during this process, changes in the oxygen valence band spectral weight that coincide with the emergence of surface conductivity are disproportionate to any change in the total intensity of the O 1s core level spectrum. This signifies that the formation of the metallic surface goes beyond a straightforward chemical doping scenario and occurs in conjunction with profound changes in the initial states and/or spatial distribution of near-E(F) electrons in the surface region.

7.
Science ; 343(6177): 1333-6, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24603154

RESUMO

Multiferroics have attracted strong interest for potential applications where electric fields control magnetic order. The ultimate speed of control via magnetoelectric coupling, however, remains largely unexplored. Here, we report an experiment in which we drove spin dynamics in multiferroic TbMnO3 with an intense few-cycle terahertz (THz) light pulse tuned to resonance with an electromagnon, an electric-dipole active spin excitation. We observed the resulting spin motion using time-resolved resonant soft x-ray diffraction. Our results show that it is possible to directly manipulate atomic-scale magnetic structures with the electric field of light on a sub-picosecond time scale.

8.
Opt Express ; 22(24): 30004-12, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606930

RESUMO

The accurate measurement of the arrival time of a hard X-ray free electron laser (FEL) pulse with respect to a laser is of utmost importance for pump-probe experiments proposed or carried out at FEL facilities around the world. This manuscript presents the latest device to meet this challenge, a THz streak camera using Xe gas clusters, capable of pulse arrival time measurements with an estimated accuracy of several femtoseconds. An experiment performed at SACLA demonstrates the performance of the device at photon energies between 5 and 10 keV with variable photon beam parameters.


Assuntos
Elétrons , Lasers , Luz , Fotografação/instrumentação , Radiação Terahertz , Xenônio/química , Fótons , Fatores de Tempo , Raios X
9.
J Synchrotron Radiat ; 21(Pt 1): 32-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24365914

RESUMO

Soft-X-ray angle-resolved photoelectron spectroscopy (ARPES) with photon energies around 1 keV combines the momentum space resolution with increasing probing depth. The concepts and technical realisation of the new soft-X-ray ARPES endstation at the ADRESS beamline of SLS are described. The experimental geometry of the endstation is characterized by grazing X-ray incidence on the sample to increase the photoyield and vertical orientation of the measurement plane. The vacuum chambers adopt a radial layout allowing most efficient sample transfer. High accuracy of the angular resolution is ensured by alignment strategies focused on precise matching of the X-ray beam and optical axis of the analyzer. The high photon flux of up to 10(13) photons s(-1) (0.01% bandwidth)(-1) delivered by the beamline combined with the optimized experimental geometry break through the dramatic loss of the valence band photoexcitation cross section at soft-X-ray energies. ARPES images with energy resolution up to a few tens of meV are typically acquired on the time scale of minutes. A few application examples illustrate the power of our advanced soft-X-ray ARPES instrumentation to explore the electronic structure of bulk crystals with resolution in three-dimensional momentum, access buried heterostructures and study elemental composition of the valence states using resonant excitation.

10.
Nat Commun ; 4: 2559, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24096628

RESUMO

High-temperature superconductivity emerges from an un-conventional metallic state. This has stimulated strong efforts to understand exactly how Fermi liquids breakdown and evolve into an un-conventional metal. A fundamental question is how Fermi liquid quasiparticle excitations break down in momentum space. Here we show, using angle-resolved photoemission spectroscopy, that the Fermi liquid quasiparticle excitations of the overdoped superconducting cuprate La1.77Sr0.23CuO4 is highly anisotropic in momentum space. The quasiparticle scattering and residue behave differently along the Fermi surface and hence the Kadowaki-Wood's relation is not obeyed. This kind of Fermi liquid breakdown may apply to a wide range of strongly correlated metal systems where spin fluctuations are present.

11.
Phys Rev Lett ; 110(26): 265502, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848894

RESUMO

High resolution resonant inelastic x-ray scattering has been performed to reveal the role of lattice coupling in a family of quasi-1D insulating cuprates, Ca2+5xY2-5xCu5O10. Site-dependent low-energy excitations arising from progressive emissions of a 70 meV lattice vibrational mode are resolved for the first time, providing a direct measurement of electron-lattice coupling strength. We show that such electron-lattice coupling causes doping-dependent distortions of the Cu-O-Cu bond angle, which sets the intrachain spin exchange interactions. Our results indicate that the lattice degrees of freedom are fully integrated into the electronic behavior in low-dimensional systems.

12.
Phys Rev Lett ; 110(12): 127404, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166848

RESUMO

We investigate the order parameter dynamics of the stripe-ordered nickelate, La(1.75)Sr(0.25)NiO(4), using time-resolved resonant x-ray diffraction. In spite of distinct spin and charge energy scales, the two order parameters' amplitude dynamics are found to be linked together due to strong coupling. Additionally, the vector nature of the spin sector introduces a longer reorientation time scale which is absent in the charge sector. These findings demonstrate that the correlation linking the symmetry-broken states does not unbind during the nonequilibrium process, and the time scales are not necessarily associated with the characteristic energy scales of individual degrees of freedom.

13.
Nat Commun ; 3: 1159, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23093196

RESUMO

Bismuth-chalchogenides are model examples of three-dimensional topological insulators. Their ideal bulk-truncated surface hosts a single spin-helical surface state, which is the simplest possible surface electronic structure allowed by their non-trivial Z(2) topology. However, real surfaces of such compounds, even if kept in ultra-high vacuum, rapidly develop a much more complex electronic structure whose origin and properties have proved controversial. Here we demonstrate that a conceptually simple model, implementing a semiconductor-like band bending in a parameter-free tight-binding supercell calculation, can quantitatively explain the entire measured hierarchy of electronic states. In combination with circular dichroism in angle-resolved photoemission experiments, we further uncover a rich three-dimensional spin texture of this surface electronic system, resulting from the non-trivial topology of the bulk band structure. Moreover, our study sheds new light on the surface-bulk connectivity in topological insulators, and reveals how this is modified by quantum confinement.

14.
Phys Rev Lett ; 108(25): 257005, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23004645

RESUMO

We present a soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) study of the stoichiometric pnictide superconductor LaRu(2)P(2). The observed electronic structure is in good agreement with density functional theory (DFT) calculations. However, it is significantly different from its counterpart in high-temperature superconducting Fe pnictides. In particular, the bandwidth renormalization present in the Fe pnictides (~2-3) is negligible in LaRu(2)P(2) even though the mass enhancement is similar in both systems. Our results suggest that the superconductivity in LaRu(2) P(2) has a different origin with respect to the iron pnictides. Finally, we demonstrate that the increased probing depth of SX-ARPES, compared to the widely used ultraviolet ARPES, is essential in determining the bulk electronic structure in the experiment.

15.
Phys Rev Lett ; 108(18): 186801, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22681100

RESUMO

The spin texture of the metallic two-dimensional electron system (sqrt[3]×sqrt[3])-Au/Ge(111) is revealed by fully three-dimensional spin-resolved photoemission, as well as by density functional calculations. The large hexagonal Fermi surface, generated by the Au atoms, shows a significant splitting due to spin-orbit interactions. The planar components of the spin exhibit a helical character, accompanied by a strong out-of-plane spin component with alternating signs along the six Fermi surface sections. Moreover, in-plane spin rotations toward a radial direction are observed close to the hexagon corners. Such a threefold-symmetric spin pattern is not described by the conventional Rashba model. Instead, it reveals an interplay with Dresselhaus-like spin-orbit effects as a result of the crystalline anisotropies.

16.
Nat Commun ; 3: 838, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22588300

RESUMO

The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La(1.75)Sr(0.25)NiO(4) to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

17.
Nature ; 485(7396): 82-5, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22522933

RESUMO

When viewed as an elementary particle, the electron has spin and charge. When binding to the atomic nucleus, it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies. Even if electrons in solids form bands and delocalize from the nuclei, in Mott insulators they retain their three fundamental quantum numbers: spin, charge and orbital. The hallmark of one-dimensional physics is a breaking up of the elementary electron into its separate degrees of freedom. The separation of the electron into independent quasi-particles that carry either spin (spinons) or charge (holons) was first observed fifteen years ago. Here we report observation of the separation of the orbital degree of freedom (orbiton) using resonant inelastic X-ray scattering on the one-dimensional Mott insulator Sr2CuO3. We resolve an orbiton separating itself from spinons and propagating through the lattice as a distinct quasi-particle with a substantial dispersion in energy over momentum, of about 0.2 electronvolts, over nearly one Brillouin zone.

18.
Phys Rev Lett ; 108(3): 037203, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22400779

RESUMO

We report on the ultrafast dynamics of magnetic order in a single crystal of CuO at a temperature of 207 K in response to strong optical excitation using femtosecond resonant x-ray diffraction. In the experiment, a femtosecond laser pulse induces a sudden, nonequilibrium increase in magnetic disorder. After a short delay ranging from 400 fs to 2 ps, we observe changes in the relative intensity of the magnetic ordering diffraction peaks that indicate a shift from a collinear commensurate phase to a spiral incommensurate phase. These results indicate that the ultimate speed for this antiferromagnetic reorientation transition in CuO is limited by the long-wavelength magnetic excitation connecting the two phases.

19.
Phys Rev Lett ; 109(25): 257207, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23368496

RESUMO

We report the observation of weak magnetism in superlattices of LaAlO(3)/SrTiO(3) using ß-detected nuclear magnetic resonance. The spin lattice relaxation rate of ^{8}Li in superlattices with a spacer layers of 8 and 6 unit cells of LaAlO(3) exhibits a strong peak near ~35 K, whereas no such peak is observed in a superlattice with spacer layer thickness of 3 unit cells. We attribute the observed temperature dependence to slowing down of weakly coupled electronic moments at the LaAlO(3)/SrTiO(3) interface. These results show that the magnetism at the interface depends strongly on the thickness of the spacer layer, and that a minimal thickness of ~4-6 unit cells is required for the appearance of magnetism. A simple model is used to determine that the observed relaxation is due to small fluctuating moments (~0.002µ(B)) in the two samples with a larger LaAlO(3) spacer thickness.

20.
Rev Sci Instrum ; 82(7): 073303, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21806178

RESUMO

The designs of a compact, fast CCD (cFCCD) camera, together with a resonant soft x-ray scattering endstation, are presented. The cFCCD camera consists of a highly parallel, custom, thick, high-resistivity CCD, readout by a custom 16-channel application specific integrated circuit to reach the maximum readout rate of 200 frames per second. The camera is mounted on a virtual-axis flip stage inside the RSXS chamber. When this flip stage is coupled to a differentially pumped rotary seal, the detector assembly can rotate about 100°/360° in the vertical/horizontal scattering planes. With a six-degrees-of-freedom cryogenic sample goniometer, this endstation has the capability to detect the superlattice reflections from the electronic orderings showing up in the lower hemisphere. The complete system has been tested at the Advanced Light Source, Lawrence Berkeley National Laboratory, and has been used in multiple experiments at the Linac Coherent Light Source, SLAC National Accelerator Laboratory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA