RESUMO
Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA sequencing revealed that >80% of cells in thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.
Assuntos
Plasticidade Neuronal , Tálamo , Humanos , Tálamo/fisiologia , Tálamo/citologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Sinapses/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Córtex Cerebral/fisiologia , Córtex Cerebral/citologia , Organoides/metabolismo , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Neurônios/metabolismoRESUMO
Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA-sequencing revealed that most cells in mature thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.
RESUMO
Impulsive choice has enduring trait-like characteristics and is defined by preference for small immediate rewards over larger delayed ones. Importantly, it is a determining factor in the development and persistence of substance use disorder (SUD). Emerging evidence from human and animal studies suggests frontal cortical regions exert influence over striatal reward processing areas during decision-making in impulsive choice or delay discounting (DD) tasks. The goal of this study was to examine how these circuits are involved in decision-making in animals with defined trait impulsivity. To this end, we trained adolescent male rats to stable behavior on a DD procedure and then re-trained them in adulthood to assess trait-like, conserved impulsive choice across development. We then used chemogenetic tools to selectively and reversibly target corticostriatal projections during performance of the DD task. The prelimbic region of the medial prefrontal cortex (mPFC) was injected with a viral vector expressing inhibitory designer receptors exclusively activated by designer drugs (Gi-DREADD), and then mPFC projections to the nucleus accumbens core (NAc) were selectively suppressed by intra-NAc administration of the Gi-DREADD actuator clozapine-n-oxide (CNO). Inactivation of the mPFC-NAc projection elicited a robust increase in impulsive choice in rats with lower vs. higher baseline impulsivity. This demonstrates a fundamental role for mPFC afferents to the NAc during choice impulsivity and suggests that maladaptive hypofrontality may underlie decreased executive control in animals with higher levels of choice impulsivity. Results such as these may have important implications for the pathophysiology and treatment of impulse control, SUDs, and related psychiatric disorders.
Assuntos
Comportamento Impulsivo , Córtex Pré-Frontal , Adolescente , Ratos , Masculino , Humanos , Animais , Comportamento Impulsivo/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Núcleo Accumbens/fisiologia , Comportamento de Escolha/fisiologiaRESUMO
Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of â¼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.
Assuntos
Córtex Auditivo/fisiologia , Síndrome de Williams/fisiopatologia , Animais , Córtex Auditivo/citologia , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas , Interneurônios/citologia , Interneurônios/fisiologia , Camundongos , Fenótipo , Transativadores/genética , Síndrome de Williams/genéticaRESUMO
Inhibitory fast-spiking interneurons in the dorsal striatum regulate actions and action strategies, including habits. Fast-spiking interneurons are widely believed to synchronize their firing due to the electrical synapses formed between these neurons. However, neuronal modelling data suggest convergent cortical input may also drive synchrony in fast-spiking interneuron networks. To better understand how fast-spiking interneuron synchrony arises, we performed dual whole-cell patch clamp electrophysiology experiments to inform a simple Bayesian network modelling cortico-fast-spiking interneuron circuitry. Dual whole-cell patch clamp electrophysiology revealed that while responsivity to corticostriatal input activation was high in fast-spiking interneurons, few of these neurons exhibited electrical coupling in adult mice. In simulations of a cortico-fast-spiking interneuron network informed by these data, the degree of glutamatergic cortical convergence onto fast-spiking interneurons significantly increased fast-spiking interneuron synchronization while manipulations of electrical coupling between these neurons exerted relatively little impact. These results suggest that the primary source of functional coordination of fast-spiking interneuron activity in adulthood arises from convergent corticostriatal input activation. KEY POINTS: Electrical synapses between striatal fast-spiking interneurons in adult mice occur in â¼8% of assayed pairs. Coincident, convergent cortical input onto fast-spiking interneurons significantly contributes to fast-spiking interneuron synchrony. Electrical synapses between fast-spiking interneurons provide only minor enhancement of fast-spiking interneuron synchrony. These results suggest a mechanism by which adult mouse fast-spiking interneurons of the striatum synchronize in the face of declining expression of the electrical synapse-forming connexin-36 protein.
Assuntos
Corpo Estriado , Interneurônios , Potenciais de Ação/fisiologia , Animais , Teorema de Bayes , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Camundongos , NeurôniosRESUMO
Recent proteome and transcriptome profiling of Alzheimer's disease (AD) brains reveals RNA splicing dysfunction and U1 small nuclear ribonucleoprotein (snRNP) pathology containing U1-70K and its N-terminal 40-KDa fragment (N40K). Here we present a causative role of U1 snRNP dysfunction to neurodegeneration in primary neurons and transgenic mice (N40K-Tg), in which N40K expression exerts a dominant-negative effect to downregulate full-length U1-70K. N40K-Tg recapitulates N40K insolubility, erroneous splicing events, neuronal degeneration and cognitive impairment. Specifically, N40K-Tg shows the reduction of GABAergic synapse components (e.g., the GABA receptor subunit of GABRA2), and concomitant postsynaptic hyperexcitability that is rescued by a GABA receptor agonist. Crossing of N40K-Tg and the 5xFAD amyloidosis model indicates that the RNA splicing defect synergizes with the amyloid cascade to remodel the brain transcriptome and proteome, deregulate synaptic proteins, and accelerate cognitive decline. Thus, our results support the contribution of U1 snRNP-mediated splicing dysfunction to AD pathogenesis.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Ribonucleoproteína Nuclear Pequena U1/genética , Doença de Alzheimer/genética , Proteoma/genética , Splicing de RNA/genética , Disfunção Cognitiva/genéticaRESUMO
Schizophrenia is a severe, chronic psychiatric disorder that devastates the lives of millions of people worldwide. The disease is characterized by a constellation of symptoms, ranging from cognitive deficits, to social withdrawal, to hallucinations. Despite decades of research, our understanding of the neurobiology of the disease, specifically the neural circuits underlying schizophrenia symptoms, is still in the early stages. Consequently, the development of therapies continues to be stagnant, and overall prognosis is poor. The main obstacle to improving the treatment of schizophrenia is its multicausal, polygenic etiology, which is difficult to model. Clinical observations and the emergence of preclinical models of rare but well-defined genomic lesions that confer substantial risk of schizophrenia (e.g., 22q11.2 microdeletion) have highlighted the role of the thalamus in the disease. Here we review the literature on the molecular, cellular, and circuitry findings in schizophrenia and discuss the leading theories in the field, which point to abnormalities within the thalamus as potential pathogenic mechanisms of schizophrenia. We posit that synaptic dysfunction and oscillatory abnormalities in neural circuits involving projections from and within the thalamus, with a focus on the thalamocortical circuits, may underlie the psychotic (and possibly other) symptoms of schizophrenia.
Assuntos
Síndrome de DiGeorge , Esquizofrenia , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genética , TálamoRESUMO
Striatal fast-spiking interneurons (FSIs) potently inhibit the output neurons of the striatum and, as such, powerfully modulate action learning. Through electrical synaptic coupling, FSIs are theorized to temporally coordinate their activity. This has important implications for their ability to temporally summate inhibition on downstream striatal projection neurons. While some in vivo single-unit electrophysiological recordings of putative FSIs support coordinated firing, others do not. Moreover, it is unclear as to what aspect of action FSIs encode. To address this, we used in vivo calcium imaging of genetically identified FSIs in freely moving mice and applied machine learning analyses to decipher the relationship between FSI activity and movement. We report that FSIs exhibit ensemble activity that encodes the speed of action sub-components, including ambulation and head movements. These results suggest FSI population dynamics fit within a Hebbian model for ensemble inhibition of striatal output guiding action.
Assuntos
Potenciais de Ação/fisiologia , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Neurônios/fisiologia , Animais , Feminino , Masculino , Camundongos Transgênicos , Neostriado/fisiologiaRESUMO
The nucleus accumbens is a critical integration center for reward-related circuitry and is comprised primarily of medium spiny projection neurons. The dynamic balance of excitation and inhibition onto medium spiny neurons determines the output of this structure. While nucleus accumbens excitatory synaptic plasticity is well-characterized, inhibitory synaptic plasticity mechanisms and their potential relevance to shaping motivated behaviors is poorly understood. Here we report the discovery of long-term depression of inhibitory synaptic transmission in the mouse nucleus accumbens core. This long-term depression is postsynaptically expressed, tropomyosin kinase B (TrkB) receptor-mediated, and augmented in the presence of ethanol. Our findings support the emerging view that TrkB signaling regulates inhibitory synaptic plasticity and suggest this mechanism in the nucleus accumbens as a target for ethanol modulation of reward.
Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Depressão Sináptica de Longo Prazo , Glicoproteínas de Membrana/metabolismo , Inibição Neural , Núcleo Accumbens , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Feminino , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
Glutamatergic projections of the thalamic rostral intralaminar nuclei of the thalamus (rILN) innervate the dorsal striatum (DS) and are implicated in dopamine (DA)-dependent incubation of drug seeking. However, the mechanism by which rILN signaling modulates reward seeking and striatal DA release is unknown. We find that activation of rILN inputs to the DS drives cholinergic interneuron burst-firing behavior and DA D2 receptor-dependent post-burst pauses in cholinergic interneuron firing. In vivo, optogenetic activation of this pathway drives reinforcement in a DA D1 receptor-dependent manner, and chemogenetic suppression of the rILN reduces dopaminergic nigrostriatal terminal activity as measured by fiber photometry. Altogether, these data provide evidence that the rILN activates striatal cholinergic interneurons to enhance the pursuit of reward through local striatal DA release and introduce an additional level of complexity in our understanding of striatal DA signaling.
Assuntos
Corpo Estriado/fisiologia , Dopamina/metabolismo , Recompensa , Tálamo/fisiologia , Animais , Corpo Estriado/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Substância Negra/metabolismo , Substância Negra/fisiologia , Tálamo/metabolismoRESUMO
Decades of work in Aplysia californica established the general rule that principles of synaptic plasticity and their molecular mechanisms are evolutionarily conserved from mollusks to mammals. However, an exquisitely sensitive, activity-dependent homosynaptic mechanism that protects against the depression of neurotransmitter release in Aplysia sensory neuron terminals has, to date, not been uncovered in other animals, including mammals. Here, we discover that depression at a mammalian synapse that is implicated in habit formation and habit learning acceleration by ethanol, the fast-spiking interneuron (FSI) to medium spiny principal projection neuron (MSN) synapse of the dorsolateral striatum, is subject to this type of synaptic protection. We show that this protection against synaptic depression is calcium- and PDZ domain interaction-dependent. These findings support activity dependent protection against synaptic depression as an Aplysia-like synaptic switch in mammals that may represent a leveraging point for treating alcohol use disorders.
Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Corpo Estriado/fisiologia , Etanol/farmacologia , Hábitos , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Aplysia/fisiologia , Cálcio/metabolismo , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Feminino , Masculino , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Domínios PDZ , Proteína Quinase C/metabolismo , Sinapses/efeitos dos fármacos , Técnicas de Cultura de TecidosRESUMO
Cortical circuits are particularly sensitive to incoming sensory information during well-defined intervals of postnatal development called 'critical periods'. The critical period for cortical plasticity closes in adults, thus restricting the brain's ability to indiscriminately store new sensory information. For example, children acquire language in an exposure-based manner, whereas learning language in adulthood requires more effort and attention. It has been suggested that pairing sounds with the activation of neuromodulatory circuits involved in attention reopens this critical period. Here, we review two critical period hypotheses related to neuromodulation: cortical disinhibition and thalamic adenosine. We posit that these mechanisms co-regulate the critical period for auditory cortical plasticity. We also discuss ways to reopen this period and rejuvenate cortical plasticity in adults.
Assuntos
Encéfalo/citologia , Período Crítico Psicológico , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Rejuvenescimento/fisiologia , Animais , Encéfalo/fisiologia , Humanos , Neurotransmissores/metabolismoRESUMO
The prevalence of nicotine dependence is higher than that for any other substance abuse disorder; still, the underlying mechanisms are not fully established. To this end, we studied acute effects by nicotine on neurotransmission in the dorsolateral striatum, a key brain region with respect to the formation of habits. Electrophysiological recordings in acutely isolated brain slices from rodent showed that nicotine (10 nm to 10 µm) produced an LTD of evoked field potentials. Current-clamp recordings revealed no significant effect by nicotine on membrane voltage or action potential frequency, indicating that the effect by nicotine is primarily synaptic. Nicotine did not modulate sIPSCs, or the connectivity between fast-spiking interneurons and medium spiny neurons, as assessed by whole-cell recordings combined with optogenetics. However, the frequency of sEPSCs was significantly depressed by nicotine. The effect by nicotine was mimicked by agonists targeting α7- or α4-containing nAChRs and blocked in slices pretreated with a mixture of antagonists targeting these receptor subtypes. Nicotine-induced LTD was furthermore inhibited by dopamine D2 receptor antagonist and occluded by D2 receptor agonist. In addition, modulation of cholinergic neurotransmission suppressed the responding to nicotine, which might reflect upon the postulated role for nAChRs as a presynaptic filter to differentially govern dopamine release depending on neuronal activity. Nicotine-induced suppression of excitatory inputs onto medium spiny neurons may promote nicotine-induced locomotor stimulation and putatively initiate neuroadaptations that could contribute to the transition toward compulsive drug taking.SIGNIFICANCE STATEMENT To decrease smoking, prevalence factors that may contribute to the development of nicotine addiction need to be identified. The data presented here show that nicotine suppresses striatal neurotransmission by selectively reducing the frequency of excitatory inputs to medium spiny neurons (MSNs) while rendering excitability, inhibitory neurotransmission, and fast-spiking interneuron-MSN connectivity unaltered. In addition, we show that the effect displayed by nicotine outlasts the presence of the drug, which could be fundamental for the addictive properties of nicotine. Considering the inhibitory tone displayed by MSNs on dopaminergic cell bodies and local terminals, nicotine-induced long-lasting depression of striatal output could play a role in behavioral transformations associated with nicotine use, and putatively elicit neuroadaptations underlying compulsive drug-seeking habits.
Assuntos
Corpo Estriado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Corpo Estriado/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , Tabagismo/metabolismo , Tabagismo/fisiopatologiaRESUMO
Altered brain energy homeostasis is a key adaptation occurring in the cocaine-addicted brain, but the effect of cocaine on the fundamental source of energy, mitochondria, is unknown. We demonstrate an increase of dynamin-related protein-1 (Drp1), the mitochondrial fission mediator, in nucleus accumbens (NAc) after repeated cocaine exposure and in cocaine-dependent individuals. Mdivi-1, a demonstrated fission inhibitor, blunts cocaine seeking and locomotor sensitization, while blocking c-Fos induction and excitatory input onto dopamine receptor-1 (D1) containing NAc medium spiny neurons (MSNs). Drp1 and fission promoting Drp1 are increased in D1-MSNs, consistent with increased smaller mitochondria in D1-MSN dendrites after repeated cocaine. Knockdown of Drp1 in D1-MSNs blocks drug seeking after cocaine self-administration, while enhancing the fission promoting Drp1 enhances seeking after long-term abstinence from cocaine. We demonstrate a role for altered mitochondrial fission in the NAc, during early cocaine abstinence, suggesting potential therapeutic treatment of disrupting mitochondrial fission in cocaine addiction.
Assuntos
Cocaína/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Dinaminas/metabolismo , Locomoção/efeitos dos fármacos , Mitocôndrias/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Cocaína/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/farmacologia , Neurônios Dopaminérgicos/ultraestrutura , Dinaminas/genética , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Locomoção/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Núcleo Accumbens/citologia , Quinazolinonas/farmacologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , AutoadministraçãoRESUMO
The dorsolateral striatum mediates habit formation, which is expedited by exposure to alcohol. Across species, alcohol exposure disinhibits the DLS by dampening GABAergic transmission onto this structure's principal medium spiny projection neurons (MSNs), providing a potential mechanistic basis for habitual alcohol drinking. However, the molecular and circuit components underlying this disinhibition remain unknown. To examine this, we used a combination of whole-cell patch-clamp recordings and optogenetics to demonstrate that ethanol potently depresses both MSN- and fast-spiking interneuron (FSI)-MSN GABAergic synaptic transmission in the DLS. Concentrating on the powerfully inhibitory FSI-MSN synapse, we further show that acute exposure of ethanol (50 mM) to striatal slices activates delta opioid receptors that reside on FSI axon terminals and negatively couple to adenylyl cyclase to induce a long-term depression of GABA release onto both direct and indirect pathway MSNs. These findings elucidate a mechanism through which ethanol may globally disinhibit the DLS.
Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Corpo Estriado/citologia , Etanol/farmacologia , Neurônios/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Receptores Opioides delta/metabolismo , Analgésicos Opioides/farmacologia , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Antagonistas de Entorpecentes/farmacologia , Parvalbuminas/genética , Parvalbuminas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptores Opioides delta/antagonistas & inibidores , Tionucleotídeos/farmacologia , Ácido gama-Aminobutírico/metabolismoRESUMO
Schizophrenia is characterized by alterations in cortico-limbic processes believed to involve modifications in activity within the prefrontal cortex (PFC) and the hippocampus. The nucleus accumbens (NAc) integrates information from these 2 brain regions and is involved in cognitive and psychomotor functions that are disrupted in schizophrenia, indicating an important role for this structure in the pathophysiology of this disorder. In this study, we used in vivo electrophysiological recordings from the NAc and the PFC of adult rats and the MAM developmental disruption rodent model of schizophrenia to explore the influence of the medial PFC on the hippocampal-accumbens pathway. We found that, in MAM-treated rats, tetanization of hippocampal inputs to the NAc produce opposite synaptic plasticity compared with controls, which is a consequence of alterations in the hippocampal-mPFC pathway. Moreover, we show that administration of the D2-receptor-blocking antipsychotic drug sulpiride either systemically or directly into the mPFC reverses the alterations in the MAM rat. Therefore, specific disruptions in cortical and hippocampal inputs in the MAM-treated rat abnormally alter plasticity in subcortical structures. Moreover, our results suggest that, in the presence of antipsychotic drugs, the disrupted plasticities are normalized, supporting a role for this mechanism in antipsychotic drug action in schizophrenia.
Assuntos
Hipocampo/patologia , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/patologia , Córtex Pré-Frontal/patologia , Esquizofrenia/patologia , Sinapses/patologia , Análise de Variância , Animais , Modelos Animais de Doenças , Feminino , Masculino , Acetato de Metilazoximetanol/toxicidade , Vias Neurais/patologia , Neurônios/fisiologia , Neurotoxinas/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Esquizofrenia/etiologiaRESUMO
The ventral tegmental area (VTA) has been implicated in a number of psychiatric disorders, including schizophrenia, depression, and bipolar disorder. One major regulator of the mesolimbic dopaminergic system is the medial prefrontal cortex (mPFC), which makes direct and indirect connections to the hippocampus and amygdala, as well as directly to the VTA. The mPFC is comprised of two subregions: the infralimbic and prelimbic cortices (ilPFC and plPFC). However, the specific roles of these subregions in regulating VTA dopamine activity have remained unclear. In this study, we aim to clarify this role and to examine the divergent neuranatomical circuits by which the mPFC regulates VTA activity. Using in vivo extracellular recordings in rats, we tested the effects of pharmacological activation (with NMDA) and inactivation (with TTX) of the ilPFC and plPFC on dopamine neuron activity, and tested the roles of the ventral subiculum (vSub) and basolateral amygdala in this process. We found that the ilPFC exerts a bidirectional control of VTA dopamine neurons, which are differentially modulated through the vSub and the basolateral amygdala. Specifically, activation or inactivation of the ilPFC attenuated or activated dopamine neuron population activity, respectively. Furthermore, dopamine activation depended on the ventral hippocampus and inactivation on the amygdala. In contrast, only inactivation of the plPFC altered dopamine neuron activity. These data indicate that the mPFC has the ability to uniquely fine-tune dopaminergic activity in the VTA. Furthermore, the data presented here suggest that the ilPFC may have a role in the pathophysiology of psychiatric disorders.
Assuntos
Tonsila do Cerebelo/fisiologia , Neurônios Dopaminérgicos/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Potenciais de Ação , Tonsila do Cerebelo/citologia , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/citologia , Masculino , N-Metilaspartato/farmacologia , Rede Nervosa/citologia , Rede Nervosa/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologiaRESUMO
The nucleus accumbens (NAc) receives converging inputs from the medial prefrontal cortex (mPFC) and the hippocampus which have competitive interactions in the NAc to influence motivational drive. We have previously shown altered synaptic plasticity in the hippocampal-NAc pathway in the methylazoxymethanol acetate (MAM) developmental model of schizophrenia in rodents that is dependent on cortical inputs. Thus, because mPFC-hippocampal balance is known to be partially altered in this model, we investigated potential pathological changes in the hippocampal influence over cortex-driven NAc spike activity. Here we show that the reciprocal interaction between the hippocampus and mPFC is absent in MAM animals but is able to be reinstated with administration of the antipsychotic drug, sulpiride. The lack of interaction between these structures in this model could explain the attentional deficits in schizophrenia patients and shed light onto their inability to focus on a single task.