Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Care Clin ; 39(4): 647-673, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704332

RESUMO

The rapid adoption of electronic health record (EHR) systems in US hospitals from 2008 to 2014 produced novel data elements for analysis. Concurrent innovations in computing architecture and machine learning (ML) algorithms have made rapid consumption of health data feasible and a powerful engine for clinical innovation. In critical care research, the net convergence of these trends has resulted in an exponential increase in outcome prediction research. In the following article, we explore the history of outcome prediction in the intensive care unit (ICU), the growing use of EHR data, and the rise of artificial intelligence and ML (AI) in critical care.


Assuntos
Inteligência Artificial , Registros Eletrônicos de Saúde , Humanos , Algoritmos , Aprendizado de Máquina , Cuidados Críticos
2.
Blood Adv ; 7(15): 4200-4214, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36920790

RESUMO

Several independent lines of evidence suggest that megakaryocytes are dysfunctional in severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a large cohort of inpatients with COVID-19 and correlated the subpopulation frequencies with clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining marker of megakaryocyte dysfunction. We further reveal a subpopulation of S100A8/A9+ megakaryocytes that contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein and RNA. Using flow cytometry of peripheral blood and in vitro studies on SARS-CoV-2-infected primary human megakaryocytes, we demonstrate that megakaryocytes can transfer viral antigens to emerging platelets. Mechanistically, we show that SARS-CoV-2-containing megakaryocytes are nuclear factor κB (NF-κB)-activated, via p65 and p52; express the NF-κB-mediated cytokines interleukin-6 (IL-6) and IL-1ß; and display high surface expression of Toll-like receptor 2 (TLR2) and TLR4, canonical drivers of NF-κB. In a cohort of 218 inpatients with COVID-19, we correlate frequencies of megakaryocyte subpopulations with clinical outcomes and show that SARS-CoV-2-containing megakaryocytes are a strong risk factor for mortality and multiorgan injury, including respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, and intensive care unit admission. Furthermore, we show that SARS-CoV-2+ megakaryocytes are present in lung and brain autopsy tissues from deceased donors who had COVID-19. To our knowledge, this study offers the first evidence implicating SARS-CoV-2+ peripheral megakaryocytes in severe disease and suggests that circulating megakaryocytes warrant investigation in inflammatory disorders beyond COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Megacariócitos/metabolismo , NF-kappa B/metabolismo , Pulmão/metabolismo
3.
Front Artif Intell ; 5: 910216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248623

RESUMO

There are over 6,000 different rare diseases estimated to impact 300 million people worldwide. As genetic testing becomes more common practice in the clinical setting, the number of rare disease diagnoses will continue to increase, resulting in the need for novel treatment options. Identifying treatments for these disorders is challenging due to a limited understanding of disease mechanisms, small cohort sizes, interindividual symptom variability, and little commercial incentive to develop new treatments. A promising avenue for treatment is drug repurposing, where FDA-approved drugs are repositioned as novel treatments. However, linking disease mechanisms to drug action can be extraordinarily difficult and requires a depth of knowledge across multiple fields, which is complicated by the rapid pace of biomedical knowledge discovery. To address these challenges, The Hugh Kaul Precision Medicine Institute developed an artificial intelligence tool, mediKanren, that leverages the mechanistic insight of genetic disorders to identify therapeutic options. Using knowledge graphs, mediKanren enables an efficient way to link all relevant literature and databases. This tool has allowed for a scalable process that has been used to help over 500 rare disease families. Here, we provide a description of our process, the advantages of mediKanren, and its impact on rare disease patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA