Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(19): 22270-22277, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35510890

RESUMO

Tin segregation in Ge1-xSnx alloys is one of the major problems potentially hindering the use of this material in devices. Ge1-xSnx microdisks fabricated from layers with Sn concentrations up to 16.9% underwent here annealing at temperatures as high as 400 °C for 20 min without Sn segregation, in contrast with the full segregation observed in the corresponding blanket layers annealed simultaneously. After annealing, no changes in the elemental composition of the microdisks were evidenced. An enhancement of the total integrated photoluminescence, with no modifications of the emission energy, was also observed. These findings show that microstructuring offers a completely new path in maintaining the stability of high Sn concentration Ge1-xSnx layers at temperatures much higher than those used for growth. This approach enables the use of thermal annealing processes to improve the properties of this alloy in optoelectronic devices (such as light emitting diodes, lasers, photodetectors, or modulators). It should also facilitate the integration of Ge1-xSnx into well-established technologies requiring medium temperature processes. The same strategy may help to prevent Sn segregation during high temperature processes in similar metastable alloys.

2.
Light Sci Appl ; 10(1): 232, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34785641

RESUMO

GeSn alloys are promising materials for CMOS-compatible mid-infrared lasers manufacturing. Indeed, Sn alloying and tensile strain can transform them into direct bandgap semiconductors. This growing laser technology however suffers from a number of limitations, such as poor optical confinement, lack of strain, thermal, and defects management, all of which are poorly discussed in the literature. Herein, a specific GeSn-on-insulator (GeSnOI) stack using stressor layers as dielectric optical claddings is demonstrated to be suitable for a monolithically integration of planar Group-IV semiconductor lasers on a versatile photonic platform for the near- and mid-infrared spectral range. Microdisk-shape resonators on mesa structures were fabricated from GeSnOI, after bonding a Ge0.9Sn0.1 alloy layer grown on a Ge strain-relaxed-buffer, itself on a Si(001) substrate. The GeSnOI microdisk mesas exhibited significantly improved optical gain as compared to that of conventional suspended microdisk resonators formed from the as-grown layer. We further show enhanced vertical out-coupling of the disk whispering gallery mode in-plane radiation, with up to 30% vertical out-coupling efficiency. As a result, the GeSnOI approach can be a valuable asset in the development of silicon-based mid-infrared photonics that combine integrated sources in a photonic platform with complex lightwave engineering.

3.
ACS Appl Nano Mater ; 3(10): 10427-10436, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33134884

RESUMO

While reversibility is a fundamental concept in thermodynamics, most reactions are not readily reversible, especially in solid-state physics. For example, thermal diffusion is a widely known concept, used among others to inject dopants into the substitutional positions in the matrix and improve device properties. Typically, such a diffusion process will create a concentration gradient extending over increasingly large regions, without possibility to reverse this effect. On the other hand, while the bottom-up growth of semiconducting nanowires is interesting, it can still be difficult to fabricate axial heterostructures with high control. In this paper, we report a thermally assisted partially reversible thermal diffusion process occurring in the solid-state reaction between an Al metal pad and a Si x Ge1-x alloy nanowire observed by in situ transmission electron microscopy. The thermally assisted reaction results in the creation of a Si-rich region sandwiched between the reacted Al and unreacted Si x Ge1-x part, forming an axial Al/Si/Si x Ge1-x heterostructure. Upon heating or (slow) cooling, the Al metal can repeatably move in and out of the Si x Ge1-x alloy nanowire while maintaining the rodlike geometry and crystallinity, allowing to fabricate and contact nanowire heterostructures in a reversible way in a single process step, compatible with current Si-based technology. This interesting system is promising for various applications, such as phase change memories in an all crystalline system with integrated contacts as well as Si/Si x Ge1-x /Si heterostructures for near-infrared sensing applications.

4.
Opt Express ; 26(25): 32500-32508, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645416

RESUMO

We demonstrate lasing up to 230 K in a GeSn heterostructure micro-disk cavity. The GeSn 16.0% optically active layer was grown on a step-graded GeSn buffer, limiting the density of misfit dislocations. The lasing wavelengths shifted from 2720 to 2890 nm at 15 K up to 3200 nm at 230 K. Compared to results reported elsewhere, we attribute the increase in maximal lasing temperature to two factors: a stronger optical confinement by a thicker active layer and a better carrier confinement provided by a GeSn 13.8% / GeSn 16.0% / GeSn 13.8% double heterostructure.

5.
Nano Lett ; 15(4): 2429-33, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25759950

RESUMO

Applying tensile strain in a single germanium crystal is a very promising way to tune its bandstructure and turn it into a direct band gap semiconductor. In this work, we stress vapor-liquid-solid grown germanium nanowires along their [111] axis thanks to the strain tranfer from a silicon nitride thin film by a microfabrication process. We measure the Γ-LH direct band gap transition by photocurrent spectrometry and quantify associated strain by X-ray Laue microdiffraction on beamline BM32 at the European Synchrotron Radiation Facility. Nanowires exhibit up to 1.48% strain and an absorption threshold down to 0.73 eV, which is in good agreement with theoretical computations for the Γ-LH transition, showing that the nanowire geometry is an efficient way of applying tensile uniaxial stress along the [111] axis of a germanium crystal.

6.
Nanoscale Res Lett ; 8(1): 38, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23336289

RESUMO

Highly n-doped silicon nanowires (SiNWs) with several lengths have been deposited via chemical vapor deposition on silicon substrate. These nanostructured silicon substrates have been used as electrodes to build symmetrical micro-ultracapacitors. These devices show a quasi-ideal capacitive behavior in organic electrolyte (1 M NEt4BF4 in propylene carbonate). Their capacitance increases with the length of SiNWs on the electrode and has been improved up to 10 µFcm-2 by using 20 µm SiNWs, i.e., ≈10-fold bulk silicon capacitance. This device exhibits promising galvanostatic charge/discharge cycling stability with a maximum power density of 1.4 mW cm-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA