Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Plants (Basel) ; 13(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891279

RESUMO

In this study, we examined over 200-year-old Ginkgo biloba L. specimens under different environmental conditions. The overall aim was to explore which factors influence their vitality and general fitness in urban environments and thus their ability to tolerate stressful habitats. In order to determine this, we used a number of different methods, including histological examinations (stomatal density and size) and physiological measurements (peroxidase enzyme activity), as well as assessing the air pollution tolerance index (APTI). The investigation of the genetic relationships between individuals was performed using flow cytometry and miRNA marker methods. The genetic tests revealed that all individuals are diploid, whereas the lus-miR168 and lus-miR408 markers indicated a kinship relation between them. These results show that the effect of different habitat characteristics can be detected through morphological and physiological responses, thus indicating relatively higher stress values for all studied individuals. A significant correlation can be found between the level of adaptability and the relatedness of the examined individuals. These results suggest that Ginkgo biloba L. is well adapted to an environment with increased stress factors and therefore suitable for use in urban areas.

2.
Data Brief ; 54: 110319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38550228

RESUMO

Remote sensing is the process of detecting and monitoring a plant's characteristics by measuring its reflected and emitted radiation at a distance, typically from a satellite or aircraft. The handheld leaf spectrometers help validate these images at the field scale. This dataset was captured by the CI-710 s SpectraVue Leaf Spectrometer (Cid-Bioscience, Camas, WA, U.S.A.). The absorbance, reflectance, and transmittance of albino plants were measured under natural cold stress in a temperate rice-growing area [1]. The experiment was carried out in field conditions at the seedling stage. The chlorophyll degradation takes place, starting with the yellowing of the leaf until plant death. Albinos and different level of leaf colour mutants are very useful for research and as well as breeding [2]. The symptoms of cool-temperature-induced chlorosis (CTIC) are widely examined in higher plants, especially in rice [3]. Beside laboratory induction, CTIC is appearing natural low temperature in early spring, especially cold-sensitive genotypes, such as indica rice cultivars (e.g. 'Dular') [4]. The dataset contains raw data from 400 nm to 1100 nm with the wavelength data increment of 0.6 nm [5]. These data may provide reliable support to researcher and breeder to make a simple comparison of the extent of chlorophyll degradation.

3.
Life (Basel) ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37895352

RESUMO

In cereal breeding, in vitro androgenesis methods are frequently applied to achieve doubled haploid (DH) plants. The aim of this study was to determine the effects of genotype (three registered varieties and eight F1 crossing combinations) and induction medium (W14mf and P4mf) on anther cultures (ACs) of triticale (×Triticosecale Wittmack). Androgenesis was induced in the treatment of each tested genotype, and the genotype significantly influenced the efficiency of AC, including in embryo-like structures (ELSs), albinos, green plantlets, and transplanted plantlets. The utilized medium also had a significant effect on the number of ELSs, albinos, and transplanted plantlets. Both media were suitable for AC in triticale DH plant production. The efficiency of AC was higher when using the P4mf medium (103.7 ELS/100 anthers, 19.7 green plantlets/100 anthers) than when using the W14mf medium (90.0 ELS/100 anthers, 17.0 green plantlets/100 anthers). However, the green plantlet regeneration efficiency of microspore-derived structures was 18.0% when using the W14mf medium, while this value was 15.9% in the case of ELSs induced with the P4mf medium. After nursery seed evaluation and propagation (DH1), the genetic homogeneity of the offspring generation (DH2) was tested using a molecular genetic method. Most of the tested DH lines showed homogeneity and were progressed into a breeding program after agronomic selection. Some DH lines showed inhomogeneity, which could be explained by the outcross inclination of triticale. We would like to call breeders' attention to the outcross character of triticale and emphasize the vigilant propagation and maintenance of the triticale DH lines in breeding programs. Due to the outcross nature of triticale, even in self-pollinated genotypes, breeders should focus on careful maintenance, along with isolation in the case of line propagations, in triticale breeding programs.

4.
Plants (Basel) ; 12(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446976

RESUMO

Nowadays, hyperspectral remote sensing data are widely used in nutrient management, crop yield forecasting and stress monitoring. These data can be acquired with satellites, drones and handheld spectrometers. In this research, handheld spectrometer data were validated by chlorophyll-a fluorescence measurements under natural cold stress. The performance of 16 rice cultivars with different origins and tolerances was monitored in the seedling stage. The studies were carried out under field conditions across two seasons to simulate different temperature regimes. Twenty-four spectral indices and eleven rapid chlorophyll-a fluorescence parameters were compared with albino plants. We identified which wavelengths are affected by low temperatures. Furthermore, the differences between genotypes were characterized by certain well-known and two newly developed (AAR and RAR) indices based on the spectral difference between the genotype and albino plant. The absorbance, reflectance and transmittance differences from the control are suitable for the discrimination of tolerant-sensitive varieties, especially based on their shape, peak and shifting distance. The following wavelengths are capable of determining the tolerant varieties, namely 548-553 nm, 667-670 nm, 687-688 nm and 800-950 nm in case of absorbance; above 700 nm for reflectance; and the whole spectrum (400-1100 nm) for transmittance.

5.
Data Brief ; 48: 109235, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383734

RESUMO

Rice production is affected by several environmental factors, such as cold, salinity and drought stress. These unfavourable factors could have a serious impact on germination as well as on later growth, causing many types of damage. Recently, polyploid breeding can offer an alternative opportunity to enhance the yield and abiotic stress tolerance in rice breeding. This article describes some germination parameters of 11 different autotetraploid breeding lines and their parental lines under different environmental stresses. Each genotype was grown in a climate chamber under controlled conditions: 13 °C for 4 weeks in the cold test and 30/25 °C for 5 days in control, salinity (150 mM NaCl) and drought (15% PEG 6000) treatments, respectively. The germination process was monitored throughout the experiment. The average data were calculated using three replicates. This dataset contains germination raw data and three calculated germination parameters, such as median germination time (MGT), final germination percentage (FGP), and germination index (GI). These data may provide reliable support to clarify whether the tetraploid lines can exceed the performance of their diploid parental lines under germination phase or not.

6.
Plants (Basel) ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176830

RESUMO

Anther culture is an efficient biotechnological tool in modern plant breeding programs to produce new varieties and parental lines in hybrid seed productions. However, some bottlenecks-low induction rate, genotype dependency, albinism-restrict the widespread utilization of in vitro anther culture in rice breeding, especially in Oryza sativa ssp. indica (indica) genotypes, while an improved efficient protocol can shorten the process of breeding. Three different induction media (N6NDK, N6NDZ, Ali-1) and four plant regeneration media (mMSNBK1, MSNBK3, MSNBKZ1, MSNBKZ2) were tested with five indica rice genotypes to increase the efficiency of in vitro androgenesis (number of calli and regenerated green plantlets). The production of calli was more efficient on the N6NDK medium with an average 88.26 calli/100 anthers and N6NDZ medium with an average of 103.88 calli/100 anthers as compared to Ali-1 with an average of 6.96 calli/100 anthers. The production of green plantlets was greater when calli was produced on N6NDK medium (2.15 green plantlets/100 anthers) compared when produced on to N6NDZ medium (1.18 green plantlets/100 anthers). Highest green plantlets production (4.7 green plantlets/100 anthers) was achieved when mMSNBK1 plant regeneration medium was used on calli produced utilizing N6NDK induction medium. In the best overall treatment (N6NDK induction medium and mMSNBK1 plant regeneration medium), four tested genotypes produced green plantlets. However, the genotype influenced the efficiency, and the green plantlets production ranged from 0.4 green plantlets/100 anthers to 8.4 green plantlets/100 anthers. The ploidy level of 106 acclimatized indica rice plantlets were characterized with flow cytometric analyses to calculate the percentage of spontaneous chromosome doubling. Altogether, 48 haploid-, 55 diploid-, 2 tetraploid- and 1 mixoploid plantlets were identified among the regenerant plantlets, and the spontaneous chromosome doubling percentage was 51.89%. Utilization of DH plants have been integrated as a routine method in the Hungarian rice breeding program. The tetraploid lines can be explored for their potential to offer new scopes for rice research and breeding directions in the future.

7.
Plants (Basel) ; 11(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559559

RESUMO

Doubled haploid (DH) plant production, such as anther culture (AC), is an effective tool used in modern rice breeding programs. The improved efficient protocols applied can shorten the process of breeding. The effect of combinations of plant growth regulators (2.5 mg/L NAA, 1 mg/L 2,4-D and 0.5 mg/L kinetin; 2 mg/L 2,4-D and 0.5 mg/L BAP) in the induction medium were compared in AC for five rice breeding materials and combinations. Induction of calli ranged from 264.6 ± 67.07 to 468.8 ± 123.2 calli/100 anthers in AC of rice genotypes. Two basal media (MS and N6) and two combinations of growth regulators (1 mg/L NAA, 1 mg/L BAP and 1 mg/L kinetin; 1.5 mg/L BAP, 0.5 mg/L NAA and 0.5 mg/L kinetin) were used as regeneration media. The in vitro green plant production was the highest with the application of the N6NDK induction medium (NAA, 2,4-D and kinetin) and the MS-based regeneration medium (1 mg/L NAA, 1 mg/BAP and 1 mg/L kinetin) in anther culture of the '1009' genotype (95.2 green plantlets/100 anthers). The mean of five genotypes was 24.48 green plantlets/100 anthers for the best treatment. Flow cytometric analyses conducted identified the microspore origin of the haploid calli produced in AC, while the uniformity of spontaneous DH plants was checked in the DH1 and DH2 generations. Spontaneous chromosome doubling ranged from 38.1% to 57.9% (mean 42.1%), depending on the breeding source. The generated and selected DH lines were tested in micro- and small-plot field experiments to identify promising lines for a pedigree breeding program. The improved AC method was integrated in a Hungarian temperate rice pedigree breeding program.

8.
J Exp Bot ; 73(15): 5089-5110, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35536688

RESUMO

The Pannonian Plain, as the most productive region of Southeast Europe, has a long tradition of agronomic production as well as agronomic research and plant breeding. Many research institutions from the agri-food sector of this region have a significant impact on agriculture. Their well-developed and fruitful breeding programmes resulted in productive crop varieties highly adapted to the specific regional environmental conditions. Rapid climatic changes that occurred during the last decades led to even more investigations of complex interactions between plants and their environments and the creation of climate-smart and resilient crops. Plant phenotyping is an essential part of botanical, biological, agronomic, physiological, biochemical, genetic, and other omics approaches. Phenotyping tools and applied methods differ among these disciplines, but all of them are used to evaluate and measure complex traits related to growth, yield, quality, and adaptation to different environmental stresses (biotic and abiotic). During almost a century-long period of plant breeding in the Pannonian region, plant phenotyping methods have changed, from simple measurements in the field to modern plant phenotyping and high-throughput non-invasive and digital technologies. In this review, we present a short historical background and the most recent developments in the field of plant phenotyping, as well as the results accomplished so far in Croatia, Hungary, and Serbia. Current status and perspectives for further simultaneous regional development and modernization of plant phenotyping are also discussed.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Agricultura/métodos , Clima , Mudança Climática , Produtos Agrícolas/genética , Melhoramento Vegetal/métodos
9.
Data Brief ; 41: 107929, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35198699

RESUMO

Hungary is northernmost temperate rice growing country in Europe. One of the main limiting factors is low temperature, especially at germination and seedling developmental stages. In early developmental stages, low temperature can impair and delay germination, as well as have negative impacts on seedling growth, causing poor stand establishment and non-uniform crop maturation [1]. Temperatures lower than 15 °C are generally detrimental for germination [2] under filed conditions for establishment of the crop. This article describes some key germination parameters of 165 rice accessions including breeding lines and varieties. Each genotype was grown in three replicates in a controlled cabinet under 13 °C for 4 weeks' duration. Growth was measured every 7th day. Growth traits such as coleoptile and radicle length were measured at the end of the experiment. The average data were calculated for three replicates. This dataset contains germination raw data and five germination parameters such as median germination time (MGT), final germination percentage (FGP), germination index (GI), coleoptile length (CL) and radicle length (RL). These data may provide reliable support for researchers and breeders to select the right rice genotypes for low temperature conditions.

10.
Methods Mol Biol ; 2287: 257-266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270035

RESUMO

Doubled haploid (DH) plant production belongs to modern biotechnology methods of plant breeding. The main advantage of DH plant production methods is the development of genetically homozygous lines in one generation, whilst in conventional breeding programmes, the development of homozygous lines requires more generations. The present chapter describes an efficient protocol for DH plant production in spelt wheat genotypes using in vitro anther culture.


Assuntos
Flores/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Técnicas de Cultura de Tecidos/métodos , Triticum/crescimento & desenvolvimento , Flores/genética , Haploidia , Técnicas In Vitro/métodos , Pólen/genética , Pólen/crescimento & desenvolvimento , Triticum/genética
11.
Plants (Basel) ; 9(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276523

RESUMO

Previously, studies on RING-type E3 ubiquitin ligases in cereals were preferentially focused on GW2 genes primarily controlling seed parameters in rice and wheat. Here we report cloning two HvYrg genes from barley that share significant homology with rice GW2 gene. In antisense genotypes efficiency of gene silencing varied between genes and transgenic lines: ASHvYrg1: 30-50% and ASHvYrg2: 20-27%. Reduced activity of both genes altered shoot system with increasing number of side shoots. Changes in leaf width, weight, or plant weight and height reached significant levels in some transgenic lines. Lowering expression of the two barley HvYrg genes caused opposite responses in spike development. Plants with ASHvYrg1 gene construct showed earlier heading time and prolonged grain-filling period, while plants from ASHvYrg2 genotype flowered in delay. Digital imaging of root development revealed that down-regulation of HvYrg1 gene variant stimulated root growth, while ASHvYrg2 plants developed reduced root system. Comparison of seed parameters indicated an increase in thousand grain weight accompanied with longer and wider seed morphology. In summary we conclude that in contrast to inhibition of GW2 genes in rice and wheat plants, down-regulation of the barely HvYrg genes caused substantial changes in vegetative organs in addition to alteration of seed parameters.

12.
Development ; 146(22)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31666236

RESUMO

The E2F transcription factors and the RETINOBLASTOMA-RELATED repressor protein are principal regulators coordinating cell proliferation with differentiation, but their role during seed development is little understood. We show that in fully developed Arabidopsis thaliana embryos, cell number was not affected either in single or double mutants for the activator-type E2FA and E2FB Accordingly, these E2Fs are only partially required for the expression of cell cycle genes. In contrast, the expression of key seed maturation genes LEAFY COTYLEDON 1/2 (LEC1/2), ABSCISIC ACID INSENSITIVE 3, FUSCA 3 and WRINKLED 1 is upregulated in the e2fab double mutant embryo. In accordance, E2FA directly regulates LEC2, and mutation at the consensus E2F-binding site in the LEC2 promoter de-represses its activity during the proliferative stage of seed development. In addition, the major seed storage reserve proteins, 12S globulin and 2S albumin, became prematurely accumulated at the proliferating phase of seed development in the e2fab double mutant. Our findings reveal a repressor function of the activator E2Fs to restrict the seed maturation programme until the cell proliferation phase is completed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição E2F/metabolismo , Sementes/crescimento & desenvolvimento , Albuminas/metabolismo , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ciclo Celular , Proliferação de Células , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo
13.
Plants (Basel) ; 8(10)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652667

RESUMO

The efficiency of in vitro anther culture was screened in a full diallel population of four spelt wheat genotypes and ten F1 hybrids. Genotype dependency was observed based on the data of embryo-like structures (ELS), green-, albino plantlets. In the diallel population and ten F1 hybrids, the green plantlets production ranged from 13.75 to 85.00 and from 6.30 to 51.00, respectively. The anther culture-derived plants of F1 hybrids were grown up in the nursery. At the harvest, 436 spontaneous doubled haploid (DH) plants were identified among the 1535 anther culture-derived transplanted and grown up individual plants. The mean of spontaneous rediploidization was 28.4% which ranged from 9.76% to 54.24%. In two consecutive years, the agronomic values of 'Tonkoly.pop1' advanced line were compared with seven DH lines of 'Tonkoly.pop1' in the nursery. The DH lines achieved competitive values in comparison with 'Tonkoly.pop1' advanced line based on the 11 measured parameters (heading date, plant height, yield, hardness, width and length of seed, TKW, hulling yield, flour yield, protein and wet gluten content). These observations presage the efficient utilization of anther culture in spelt wheat breeding.

14.
Front Plant Sci ; 10: 501, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114595

RESUMO

In the present study we analyzed the responses of wheat to mild salinity and drought with special emphasis on the so far unclarified interaction of these important stress factors by using high-throughput phenotyping approaches. Measurements were performed on 14 genotypes of different geographic origin (Austria, Azerbaijan, and Serbia). The data obtained by non-invasive digital RGB imaging of leaf/shoot area reflect well the differences in total biomass measured at the end of the cultivation period demonstrating that leaf/shoot imaging can be reliably used to predict biomass differences among different cultivars and stress conditions. On the other hand, the leaf/shoot area has only a limited potential to predict grain yield. Comparison of gas exchange parameters with biomass accumulation showed that suppression of CO2 fixation due to stomatal closure is the principal cause behind decreased biomass accumulation under drought, salt and drought plus salt stresses. Correlation between grain yield and dry biomass is tighter when salt- and drought stress occur simultaneously than in the well-watered control, or in the presence of only salinity or drought, showing that natural variation of biomass partitioning to grains is suppressed by severe stress conditions. Comparison of yield data show that higher biomass and grain yield can be expected under salt (and salt plus drought) stress from those cultivars which have high yield parameters when exposed to drought stress alone. However, relative yield tolerance under drought stress is not a good indicator of yield tolerance under salt (and salt plus drought) drought stress. Harvest index of the studied cultivars ranged between 0.38 and 0.57 under well watered conditions and decreased only to a small extent (0.37-0.55) even when total biomass was decreased by 90% under the combined salt plus drought stress. It is concluded that the co-occurrence of mild salinity and drought can induce large biomass and grain yield losses in wheat due to synergistic interaction of these important stress factors. We could also identify wheat cultivars, which show high yield parameters under the combined effects of salinity and drought demonstrating the potential of complex plant phenotyping in breeding for drought and salinity stress tolerance in crop plants.

15.
Phytochemistry ; 129: 14-23, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27469099

RESUMO

Barley represents one of the major crops grown worldwide; its genetic transformation provides an important tool for the improvement of crop quality and tolerance to environmental stress factors. Biotic and abiotic stresses produce reactive oxygen species in the plant cells that can directly oxidize the cellular components including lipid membranes; resulting in lipid peroxidation and subsequently the accumulation of reactive carbonyl compounds. In order to protect barley plants from the effects of stress-produced reactive carbonyls, an Agrobacterium-mediated transformation was carried out using the Medicago sativa aldose reductase (MsALR) gene. In certain transgenic lines the produced MsALR enzyme was targeted to the chloroplasts to evaluate its protective effect in these organelles. The dual fluorescent protein-based method was used for the evaluation of tolerance of young seedlings to diverse stresses; our results demonstrated that this technique could be reliably applied for the detection of cellular stress in a variety of conditions. The chlorophyll and carotenoid content measurements also supported the results of the fluorescent protein-based method and the stress-protective effect of the MsALR enzyme. Targeting of MsALR into the chloroplast has also resulted in increased stress tolerance, similarly to the observed effect of the cytosolic MsALR accumulation. The results of the DsRed/GFP fluorescent protein-based method indicated that both the cytosol and chloroplast accumulation of MsALR can increase the abiotic stress tolerance of transgenic barley lines.


Assuntos
Aldeído Redutase/metabolismo , Citoplasma/metabolismo , Hordeum/genética , Hordeum/metabolismo , Medicago sativa/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Animais , Cloroplastos/metabolismo , Peroxidação de Lipídeos , Plântula/metabolismo
16.
PeerJ ; 4: e1708, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047703

RESUMO

We report a case study of natural variations and correlations of some photosynthetic parameters, green biomass and grain yield in Cappelle Desprez and Plainsman V winter wheat (Triticum aestivum L.) cultivars, which are classified as being drought sensitive and tolerant, respectively. We monitored biomass accumulation from secondary leaves in the vegetative phase and grain yield from flag leaves in the grain filling period. Interestingly, we observed higher biomass production, but lower grain yield stability in the sensitive Cappelle cultivar, as compared to the tolerant Plainsman cv. Higher biomass production in the sensitive variety was correlated with enhanced water-use efficiency. Increased cyclic electron flow around PSI was also observed in the Cappelle cv. under drought stress as shown by light intensity dependence of the ratio of maximal quantum yields of Photosystem I and Photosystem II, as well by the plot of the Photosystem I electron transport rate as a function of Photosystem II electron transport rate. Higher CO2 uptake rate in flag leaves of the drought-stressed Plainsman cv. during grain filling period correlates well with its higher grain yield and prolonged transpiration rate through spikes. The increase in drought factor (DFI) and performance (PI) indices calculated from variable chlorophyll fluorescence parameters of secondary leaves also showed correlation with higher biomass in the Cappelle cultivar during the biomass accumulation period. However, during the grain filling period, DFI and PI parameters of the flag leaves were higher in the tolerant Plainsman V cultivar and showed correlation with grain yield stability. Our results suggest that overall biomass and grain yield may respond differentially to drought stress in different wheat cultivars and therefore phenotyping for green biomass cannot be used as a general approach to predict grain yield. We also conclude that photosynthetic efficiency of flag and secondary leaves is correlated with grain yield and green biomass, respectively. In addition, secondary trait associated mechanisms like delayed senescence and higher water-use efficiency also contribute to biomass stability. Our studies further prove that photosynthetic parameters could be used to characterize environmental stress responses.

17.
Int J Mol Sci ; 16(12): 30046-60, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26694368

RESUMO

The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%-0.32% (v/v) of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%-1.40% (v/v) and 0%-1.53% (v/v) from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat.


Assuntos
Vias Biossintéticas , Ácidos Graxos Insaturados/biossíntese , Expressão Gênica , Genes Sintéticos , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Biolística , Cromatografia Gasosa , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Sementes/metabolismo , Homologia de Sequência do Ácido Nucleico , Transformação Genética , Transgenes , Triticum/microbiologia
18.
ScientificWorldJournal ; 2012: 657945, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22649303

RESUMO

We present an experiment done on a bar(+) wheat line treated with 14 different concentrations of glufosinate ammonium-an effective component of nonselective herbicides-during seed germination in a closed experimental system. Yield components as number of spikes per plant, number of grains per spike, thousand kernel weight, and yield per plant were thoroughly analysed and statistically evaluated after harvesting. We found that a concentration of glufosinate ammonium 5000 times the lethal dose was not enough to inhibit the germination of transgenic plants expressing the bar gene. Extremely high concentrations of glufosinate ammonium caused a bushy phenotype, significantly lower numbers of grains per spike, and thousand kernel weights. Concerning the productivity, we observed that concentrations of glufosinate ammonium 64 times the lethal dose did not lead to yield depression. Our results draw attention to the possibilities implied in the transgenic approaches.


Assuntos
Acetiltransferases/genética , Aminobutiratos/administração & dosagem , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Triticum/efeitos dos fármacos , Resistência a Medicamentos/genética , Herbicidas/farmacologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Triticum/genética , Triticum/crescimento & desenvolvimento
19.
J Exp Bot ; 59(12): 3359-69, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18641397

RESUMO

Drought is a serious, worldwide problem for crop production and also affects yields of barley and wheat, together with other stressors such as frost, viral diseases, or fungal pathogens. Although a number of candidate genes have been identified by transcriptome approaches in recent years, only very few have been tested in functional assays for a beneficial effect on drought tolerance. Here, a transient assay system in microprojectile-bombarded barley leaves is described that allows the functional testing of dehydration stress-related candidate genes by RNA interference (RNAi) or overexpression. Cellular stress or damage in dedydrated leaves is reported by a reduced accumulation of slowly maturing, native red-fluorescing protein DsRed that is known to be sensitive to denaturing conditions. After a dehydration-stress period of 4 d during which the relative fresh weight of leaves was kept at 60-66% of initial fresh weight, a reproducible reduction of normalized DsRed fluorescence was observed. In order to obtain proof of concept, a number of barley mRNAs homologous to drought response genes were selected and targeted by transient induced gene silencing (TIGS). TIGS of four tested genes resulted in a significantly stronger decrease of normalized DsRed fluorescence in dehydration-stressed leaves, whereas they had no effect in fully turgescent control leaves. These genes encode barley drought-responsive factor HvDRF1 (DREB2-like), dehydrin 6, late embryogenesis-abundant protein HVA1, and the vacuolar sodium/proton antiporter HvHNX1. The four targeted transcripts were also found to accumulate rapidly in dehydration-stressed barley leaf segments. The results suggest a value of the TIGS system for functional pre-screening of larger numbers of drought or dehydration stress-related candidate genes in barley.


Assuntos
Hordeum/fisiologia , Medições Luminescentes/métodos , Microscopia de Fluorescência/métodos , Proteínas de Plantas/metabolismo , Desastres , Regulação da Expressão Gênica de Plantas , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hordeum/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA