Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5294, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438405

RESUMO

Monte Carlo simulations of physics processes at particle colliders like the Large Hadron Collider at CERN take up a major fraction of the computational budget. For some simulations, a single data point takes seconds, minutes, or even hours to compute from first principles. Since the necessary number of data points per simulation is on the order of 10 9 - 10 12 , machine learning regressors can be used in place of physics simulators to significantly reduce this computational burden. However, this task requires high-precision regressors that can deliver data with relative errors of less than 1% or even 0.1% over the entire domain of the function. In this paper, we develop optimal training strategies and tune various machine learning regressors to satisfy the high-precision requirement. We leverage symmetry arguments from particle physics to optimize the performance of the regressors. Inspired by ResNets, we design a Deep Neural Network with skip connections that outperform fully connected Deep Neural Networks. We find that at lower dimensions, boosted decision trees far outperform neural networks while at higher dimensions neural networks perform significantly better. We show that these regressors can speed up simulations by a factor of 10 3 - 10 6 over the first-principles computations currently used in Monte Carlo simulations. Additionally, using symmetry arguments derived from particle physics, we reduce the number of regressors necessary for each simulation by an order of magnitude. Our work can significantly reduce the training and storage burden of Monte Carlo simulations at current and future collider experiments.

2.
Nat Prod Res ; : 1-8, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38148119

RESUMO

Dibromosterculic acid [8-(1,2-dibromo-2-octylcyclopropyl)-octanoic acid], a new synthetic derivative was prepared by bromination of sterculic acid. This synthetic derivative showed strong fungicidal activity against two pathogenic fungal species namely Penicillium chrysogenum and Aspergillus niger with minimum inhibitory concentration (MIC) value of 0.007 mg/ml and good bactericidal activity against Bacillus subtilis and Xanthomonas sp. with MIC value of 0.015 mg/ml. Cytotoxic activity on both normal (MCF-10A) and cancerous (MDA-MB-468) cell lines revealed that the survivability percentage of normal cells was unaffected, whereas cancerous cells were decreased greatly by dibromosterculic acid with 50% survivability at 9 µg/ml concentration. Molecular-docking using AutoDock 4.2 with Bax exhibited strong pi-sigma interaction with PHE-93, pi-alkyl and alkyl interaction with TRP-139, ARG-89 and PHE-92 whereas MDM2 revealed strong hydrogen bond interaction with GLN-59 and pi-alkyl interaction with PHE-55. All experimental parameters suggested that this synthetic derivative would be valuable for target-specific drug development with nominal side effects.

3.
J Biol Phys ; 49(2): 195-234, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36947291

RESUMO

Growth curve models play an instrumental role in quantifying the growth of biological processes and have immense practical applications across all disciplines. The most popular growth metric to capture the species fitness is the "Relative Growth Rate" in this domain. The different growth laws, such as exponential, logistic, Gompertz, power, and generalized Gompertz or generalized logistic, can be characterized based on the monotonic behavior of the relative growth rate (RGR) to size or time. Thus, in this case, species fitness can be determined truly through RGR. However, in nature, RGR is often non-monotonic and specifically bell-shaped, especially in the situation when a species is adapting to a new environment [1]. In this case, species may experience with the same fitness (RGR) for two different time points. The species precise growth and maturity status cannot be determined from this RGR function. The instantaneous maturity rate (IMR), as proposed by [2], helps to determine the correct maturity status of the species. Nevertheless, the metric IMR suffers from severe drawbacks; (i) IMR is intractable for all non-integer values of a specific parameter. (ii) The measure depends on a model parameter. The mathematical expression of IMR possesses the term "carrying capacity" which is unknown to the experimenter. (iii) Note that for identifying the precise growth status of a species, it is also necessary to understand its response when the populations are deflected from their equilibrium position at carrying capacity. This is an established concept in population biology, popularly known as the return rate. However, IMR does not provide information on the species deflection rate at the steady state. Hence, we propose a new growth measure connected with the species return rate, termed the "reverse of relative of relative growth rate" (henceforth, RRRGR), which is treated as a proxy for the IMR, having similar mathematical properties. Finally, we introduce a stochastic RRRGR model for specifying precise species growth and status of maturity. We illustrate the model through numerical simulations and real fish data. We believe that this study would be helpful for fishery biologists in regulating the favorable conditions of growth so that the species can reach a steady state with optimum effort.


Assuntos
Crescimento e Desenvolvimento , Modelos Biológicos , Animais
4.
Sci Rep ; 12(1): 15827, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138106

RESUMO

With the increasing use of machine learning models in computational socioeconomics, the development of methods for explaining these models and understanding the causal connections is gradually gaining importance. In this work, we advocate the use of an explanatory framework from cooperative game theory augmented with do calculus, namely causal Shapley values. Using causal Shapley values, we analyze socioeconomic disparities that have a causal link to the spread of COVID-19 in the USA. We study several phases of the disease spread to show how the causal connections change over time. We perform a causal analysis using random effects models and discuss the correspondence between the two methods to verify our results. We show the distinct advantages a non-linear machine learning models have over linear models when performing a multivariate analysis, especially since the machine learning models can map out non-linear correlations in the data. In addition, the causal Shapley values allow for including the causal structure in the variable importance computed for the machine learning model.


Assuntos
COVID-19 , COVID-19/epidemiologia , Causalidade , Humanos , Modelos Lineares , Aprendizado de Máquina , Fatores Socioeconômicos , Estados Unidos/epidemiologia
5.
Rep Prog Phys ; 85(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35522172

RESUMO

Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.

6.
Sci Rep ; 11(1): 18891, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556753

RESUMO

The complexities involved in modelling the transmission dynamics of COVID-19 has been a roadblock in achieving predictability in the spread and containment of the disease. In addition to understanding the modes of transmission, the effectiveness of the mitigation methods also needs to be built into any effective model for making such predictions. We show that such complexities can be circumvented by appealing to scaling principles which lead to the emergence of universality in the transmission dynamics of the disease. The ensuing data collapse renders the transmission dynamics largely independent of geopolitical variations, the effectiveness of various mitigation strategies, population demographics, etc. We propose a simple two-parameter model-the Blue Sky model-and show that one class of transmission dynamics can be explained by a solution that lives at the edge of a blue sky bifurcation. In addition, the data collapse leads to an enhanced degree of predictability in the disease spread for several geographical scales which can also be realized in a model-independent manner as we show using a deep neural network. The methodology adopted in this work can potentially be applied to the transmission of other infectious diseases and new universality classes may be found. The predictability in transmission dynamics and the simplicity of our methodology can help in building policies for exit strategies and mitigation methods during a pandemic.


Assuntos
COVID-19/prevenção & controle , COVID-19/transmissão , Transmissão de Doença Infecciosa/estatística & dados numéricos , COVID-19/metabolismo , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Modelos Estatísticos , Modelos Teóricos , Pandemias , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
7.
J R Soc Interface ; 18(175): 20200954, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622147

RESUMO

One of the more widely advocated solutions for slowing down the spread of COVID-19 has been automated contact tracing. Since proximity data can be collected by personal mobile devices, the natural proposal has been to use this for automated contact tracing providing a major gain over a manual implementation. In this work, we study the characteristics of voluntary and automated contact tracing and its effectiveness for mapping the spread of a pandemic due to the spread of SARS-CoV-2. We highlight the infrastructure and social structures required for automated contact tracing to work. We display the vulnerabilities of the strategy to inadequate sampling of the population, which results in the inability to sufficiently determine significant contact with infected individuals. Of crucial importance will be the participation of a significant fraction of the population for which we derive a minimum threshold. We conclude that relying largely on automated contact tracing without population-wide participation to contain the spread of the SARS-CoV-2 pandemic can be counterproductive and allow the pandemic to spread unchecked. The simultaneous implementation of various mitigation methods along with automated contact tracing is necessary for reaching an optimal solution to contain the pandemic.


Assuntos
COVID-19 , Busca de Comunicante , Modelos Teóricos , Pandemias , SARS-CoV-2 , Software , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos
8.
Chaos Solitons Fractals ; 144: 110697, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33495675

RESUMO

We have put an effort to estimate the number of publications related to the modelling aspect of the corona pandemic through the web search with the corona associated keywords. The survey reveals that plenty of epidemiological models outcast the simple population dynamics solution. Most of the future predictions based on these epidemiological models are highly unreliable because of the complexity of the dynamical equations and the poor knowledge of realistic values of the model parameters. The incidence time series of top ten corona infected countries are erratic and sparse. But in comparison, the incidence and disease fitness relationships are uniform and concave upward in nature. These simple profiles with the acceleration curves have fundamental implications in understanding the instinctive dynamics of the corona pandemic. We propose a simple population dynamics solution based on the incidence-fitness relationship in predicting that a plateau or steady state of SARS-CoV-2 will be reached using the basic concept of geometry.

9.
Eur Phys J C Part Fields ; 77(10): 688, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31997924

RESUMO

Within the standard approach of effective field theory of weak interactions for Δ B = 1 transitions, we look for possibly unexpected subtle New Physics effects, here dubbed "flavourful Easter eggs". We perform a Bayesian global fit using the publicly available HEPfit package, taking into account state-of-the-art experimental information concerning these processes, including the suggestive measurements from LHCb of R K and R K ∗ , the latter available only very recently. We parametrise New Physics contributions to b → s transitions in terms of shifts of Wilson coefficients of the electromagnetic dipole and semileptonic operators, assuming CP-conserving effects, but allowing in general for violation of lepton flavour universality. We show how optimistic/conservative hadronic estimates can impact quantitatively the size of New Physics extracted from the fit. With a conservative approach to hadronic uncertainties we find nonzero New Physics contributions to Wilson coefficients at the level of ∼ 3 σ , depending on the model chosen. Furthermore, given the interplay between hadronic contributions and New Physics effects in the leptonic vector current, a scenario with nonstandard leptonic axial currents is comparable to the more widely advocated one with New Physics in the leptonic vector current.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA