Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791264

RESUMO

Flavonoids, a variety of plant secondary metabolites, are known for their diverse biological activities. Isoflavones are a subgroup of flavonoids that have gained attention for their potential health benefits. Puerarin is one of the bioactive isoflavones found in the Kudzu root and Pueraria genus, which is widely used in alternative Chinese medicine, and has been found to be effective in treating chronic conditions like cardiovascular diseases, liver diseases, gastric diseases, respiratory diseases, diabetes, Alzheimer's disease, and cancer. Puerarin has been extensively researched and used in both scientific and clinical studies over the past few years. The purpose of this review is to provide an up-to-date exploration of puerarin biosynthesis, the most common extraction methods, analytical techniques, and biological effects, which have the potential to provide a new perspective for medical and pharmaceutical research and development.


Assuntos
Isoflavonas , Isoflavonas/biossíntese , Isoflavonas/química , Isoflavonas/isolamento & purificação , Humanos , Pueraria/química , Flavonoides/biossíntese , Animais
2.
Pharmaceutics ; 16(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38399277

RESUMO

Niosomes are vesicular nanocarriers, biodegradable, relatively non-toxic, stable, and inexpensive, that provide an alternative for lipid-solid carriers (e.g., liposomes). Niosomes may resolve issues related to the instability, fast degradation, bioavailability, and insolubility of different drugs or natural compounds. Niosomes can be very efficient potential systems for the specific delivery of anticancer, antioxidant, anti-inflammatory, antimicrobial, and antibacterial molecules. This review aims to present an overview of their composition, the most common formulation techniques, as well as of recent utilizations as delivery systems in cancer therapy.

3.
Animals (Basel) ; 13(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38136919

RESUMO

Anencephaly, a severe neural tube defect characterized by the absence of major parts of the brain and skull, is a rare congenital disorder that has been observed in various species, including cats. Considering the uncommon appearance of anencephaly, this paper aims to present anencephaly in a stillborn male kitten from an accidental inbreeding using various paraclinical methods. Histological examination of tissue samples from the cranial region, where parts of the skull were absent, revealed the presence of atypical nerve tissue with neurons and glial cells organized in clusters, surrounded by an extracellular matrix and with an abundance of blood vessels, which are large, dilated, and filled with blood, not characteristic of nerve tissue structure. In CT scans, the caudal part of the frontal bone, the fronto-temporal limits, and the parietal bone were observed to be missing. CT also revealed that the dorsal tubercle of the atlas, the dorsal neural arch, and the spinal process of the C2-C7 bones were missing. In conclusion, the kitten was affected by multiple congenital malformations, a combination of exencephaly-anencephaly, maxillary brachygnathism, closed cranial spina bifida at the level of cervical vertebrae, kyphoscoliosis, palatoschisis, and partial intestinal atresia. The importance of employing imaging techniques cannot be overstated when it comes to the accurate diagnosis of neural tube defects.

4.
Plants (Basel) ; 12(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37514347

RESUMO

Recently, increased attention has been paid to natural sources as raw materials for the development of new added-value products. Flavonoids are a large family of polyphenols which include several classes based on their basic structure: flavanones, flavones, isoflavones, flavonols, flavanols, and anthocyanins. They have a multitude of biological properties, such as anti-inflammatory, antioxidant, antiviral, antimicrobial, anticancer, cardioprotective, and neuroprotective effects. Current trends of research and development on flavonoids relate to identification, extraction, isolation, physico-chemical characterization, and their applications to health benefits. This review presents an up-to-date survey of the most recent developments in the natural flavonoid classes, the biological activity of representative flavonoids, current extraction techniques, and perspectives.

5.
Animals (Basel) ; 13(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238140

RESUMO

Congenital abnormalities in animals, including abnormalities of the cleft lip and jaw and hypospadias have been reported in all domesticated species. They are a major concern for breeders due to the increased economic loss they entail. In this article, we described a congenital bilateral cheilognathoschisis (cleft lip and jaw) with campylognathia in association with penile hypospadias and preputial hypoplasia with failure of preputial fusion in a Bos taurus crossbred Piedmontese × Wagyu calf. Clinical examination, computed tomography, and whole genome sequencing were performed to describe and identify a possible cause of the abnormalities. Clinical examination revealed a bilateral cheilognathoschisis of approximately 4 cm in length and 3 cm in width in the widest part, with computer tomography analyses confirming the bilateral absence of the processus nasalis of the incisive bone and the lateral deviation of the processus palatinus towards the left side. Genomic data analyses identified 13 mutations with a high impact on the products of the following overlapped genes: ACVR1, ADGRA2, BHMT2, BMPR1B, CCDC8, CDH1, EGF, F13A1, GSTP1, IRF6, MMP14, MYBPHL, and PHC2 with ADGRA2, EGF, F13A1, GSTP1, and IRF6 having mutations in a homozygous state. The whole genome investigation indicates the involvement of multiple genes in the birth defects observed in this case.

6.
Gels ; 8(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36286127

RESUMO

Commercial cellulase Cellic CTec2 was immobilized by the entrapment technique in sol-gel matrices, and sol-gel entrapment with deposition onto magnetic nanoparticles, using binary or ternary systems of silane precursors with alkyl- or aryl-trimethoxysilanes, at different molar ratios. Appropriate tailoring of the sol-gel matrix allowed for the enhancement of the catalytic efficiency of the cellulase biocatalyst, which was then evaluated in the hydrolysis reaction of Avicel microcrystalline cellulose. A correlation between the catalytic activity with the properties of the sol-gel matrix of the nanobiocatalysts was observed using several characterization methods: scanning electron microscopy (SEM), fluorescence microscopy (FM), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA/DTA). The homogeneous distribution of the enzymes in the sol-gel matrix and the mass loss profile as a function of temperature were highlighted. The influence of temperature and pH of the reaction medium on the catalytic performance of the nanobiocatalysts as well as the operational stability under optimized reaction conditions were also investigated; the immobilized biocatalysts proved their superiority in comparison to the native cellulase. The magnetic cellulase biocatalyst with the highest efficiency was reused in seven successive batch hydrolysis cycles of microcrystalline cellulose with remanent activity values that were over 40%, thus we obtained promising results for scaling-up the process.

7.
Foods ; 11(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36010484

RESUMO

This study reports the synthesis of a hybrid sol-gel material, based on organically modified silanes (ORMOSILs) with epoxy functional groups, and its application in the stabilization of lipase type B from Candida antarctica (CalB) through sol-gel entrapment. The key immobilization parameters in the sol-gel entrapment of lipase using epoxysilanes were optimized by the design of numerous experiments, demonstrating that glycidoxypropyl-trimethoxysilane can allow the formation of a matrix with excellent properties in view of the biocatalytic esterifications catalyzed by this lipase, at an enzyme loading of 25 g/mol of silane. The characterization of the immobilized biocatalyst and the correlation of its catalytic efficiency with the morphological and physicochemical properties of the sol-gel matrix was accomplished through scanning electron microscopy (SEM), fluorescence microscopy (FM), as well as thermogravimetric and differential thermal analysis (TGA/DTA). The operational and thermal stability of lipase were increased as a result of immobilization, with the entrapped lipase retaining 99% activity after 10 successive reaction cycles in the batch solventless synthesis of n-amyl caproate. A possible correlation of optimal productivity and yield was attempted for this immobilized lipase via the continuous flow synthesis of n-amyl caproate in a solventless system. The robustness and excellent biocatalytic efficiency of the optimized biocatalyst provide a promising solution for the synthesis of food-grade flavor esters, even at larger scales.

8.
Polymers (Basel) ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215647

RESUMO

Biomaterials available for a wide range of applications are generally polysaccharides. They may have inherent antimicrobial activity in the case of chitosan. However, in order to have specific functionalities, bioactive compounds must be immobilized or incorporated into the polymer matrix, as in the case of cellulose. We studied materials obtained by functionalizing cellulose with quaternary ammonium salts: dodecyl-trimethyl-ammonium bromide (DDTMABr), tetradecyl-trimethyl-ammonium bromide (TDTMABr), hexadecyl-trimethyl ammonium chloride (HDTMACl), some phosphonium salts: dodecyl-triphenyl phosphonium bromide (DDTPPBr) and tri n-butyl-hexadecyl phosphonium bromide (HDTBPBr) and extractants containing sulphur: 2-mercaptobenzothiazole (MBT) and thiourea (THIO). Cel-TDTMABr material, whose alkyl substituent chain conformation was shortest, showed the best antimicrobial activity for which, even at the lowest functionalization ratio, 1:0.012 (w:w), the microbial inhibition rate is 100% for Staphylococcus aureus, Escherichia coli, and Candida albicans. Among the materials obtained by phosphonium salt functionalization, Cel-DDTPPBr showed a significant bactericidal effect compared to Cel-HDTBPBr. For instance, to the same functionalization ratio = 1:0.1, the inhibition microbial growth rate is maximum in the case of Cel-DDTPPBr for Staphylococcus aureus, Escherichia coli, and Candida albicans. At the same time, for the Cel-HDTBPBr material, the total bactericidal effect is not reached even at the functionalization ratio 1:0.5. This behavior is based on the hydrophobicity difference between the two extractants, DDTPPBr and HDTBPBr. Cel-MBT material has a maximum antimicrobial effect upon Staphylococcus aureus, Escherichia coli, and Candida albicans at functionalized ratio = 1:0.5. Cel-THIO material showed a bacteriostatic and fungistatic effect, the inhibition of microbial growth being a maximum of 76% for Staphylococcus aureus at the functionalized ratio = 1:0.5. From this perspective, biomaterials obtained by SIR impregnation of cellulose can be considered a benefit to be used to obtain biomass-derived materials having superior antimicrobial properties versus the non-functional support.

9.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639061

RESUMO

The study of new useful, efficient and selective structures for the palladium ions' recovery has led to the development of a new series of macromolecules. Thus, this study presents a comparative behavior of two crown benzene ethers that modify the magnesium silicate surface used as adsorbent for palladium. These crown ethers are dibenzo18-crown-6 (DB18C6) and dibenzo 30-crown-10 (DB30C10). The obtained materials were characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX) and Fourier-transform infrared spectroscopy (FT-IR). The specific surface area (BET) and point of zero charge (PZC) of the two materials were determined. The palladium ions' recovery from synthetic aqueous solutions studies aimed to establish the adsorption mechanism. For this desideratum, the kinetic, equilibrium and thermodynamic studies show that MgSiO3-DB30C10 have a higher adsorption capacity (35.68 mg g-1) compared to MgSiO3-DB18C6 (21.65 mg g-1). Thermodynamic studies highlight that the adsorption of Pd(II) on the two studied materials are spontaneous and endothermic processes. The positive values of the entropy (ΔS0) suggest that the studied adsorption processes show a higher disorder at the liquid/solid interface. Desorption studies were also performed, and it was found that the degree of desorption was 98.3%.


Assuntos
Éteres de Coroa/química , Silicatos de Magnésio/química , Paládio/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica
10.
Int J Mol Sci ; 20(7)2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30935127

RESUMO

The aim of this paper was to produce a new composite material based on carbon and iron oxides, starting from soluble starch and ferric chloride. The composite material was synthesized by simple thermal decomposition of a reaction mass obtained from starch and iron chloride, in an inert atmosphere. Starch used as a carbon source also efficiently stabilizes the iron oxides particles obtained during the thermal decomposition. The reaction mass used for the thermal decomposition was obtained by simultaneously mixing the carbon and iron oxide precursors, without addition of any precipitation agent. The proper composite material can be obtained by rigorously adhering to the stirring time, temperature, and water quantity used during the preparation of the reaction mass, as well as the thermal regime and the controlled atmosphere used during the thermal decomposition. Synthesized materials were characterized using thermogravimetric analysis, X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infra-red spectroscopy (FT-IR). The performances of the obtained material were highlighted by studying their adsorbent properties and by determining the maximum adsorption capacity for arsenic removal from aqueous solutions.


Assuntos
Carbono/química , Compostos Férricos/química , Amilopectina/química , Amilose/química , Arsênio/química , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
11.
Molecules ; 23(6)2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29861463

RESUMO

The objective of our study was to determine the effects of clinoptilolite supplemented in colostrum on the blood serum protein electrophoretic pattern of new-born calves. METHODS: Romanian Black and White new-born calves involved in the study were divided into 3 groups: the control group (C) that received colostrum without clinoptilolite, and experimental groups I (E1) and II (E2) that received colostrum supplemented with 0.5% and 2% clinoptilolite, respectively. The concentration of total protein and protein fractions (albumin, α1-globulin, α2-globulin, ß-globulin and γ-globulin) were analyzed by electrophoresis on cellulose acetate. RESULTS: At hour 30 after birth, concentrations of γ-globulins, ß-globulin and total protein in E1 group of calves were higher than in control group by 42.11% (p < 0.05), 28.48% (p > 0.05) and 18.52% (p > 0.05), respectively, and were higher, but not significantly, in group E2 compared to the control group. This was in accordance with a significant lower albumin/globulin ratio in groups E1 and E2 (29.35%, p < 0.05 and 35.87%, p < 0.05, respectively) than in control group at 30 h postpartum, which indicates an obvious increase of the globulins fraction in experimental groups. The conclusion: Clinoptilolite was effective in improving passive transfer in new-born calves, but it was more effective if added in colostrum with a dose of 0.5% than with a dose of 2%.


Assuntos
Eletroforese das Proteínas Sanguíneas , Proteínas Sanguíneas/metabolismo , Zeolitas/farmacologia , Animais , Animais Recém-Nascidos , Proteínas Sanguíneas/química , Bovinos , Imunoglobulina G/sangue , Imunoglobulina G/química
12.
BMC Genomics ; 18(1): 837, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089035

RESUMO

BACKGROUND: Citrus worldwide is threatened by huanglongbing (HLB) and tristeza diseases caused by 'Candidatus Liberibacter asiaticus' (CaLas) and Citrus tristeza virus (CTV). Although the pathogens are members of the α-proteobacteria and Closteroviridae, respectively, both are restricted to phloem cells in infected citrus and are transmitted by insect vectors. The response of sweet orange to single infection by either of these two pathogens has been characterized previously by global gene expression analysis. But because of the ubiquity of these pathogens where the diseases occur, co-infection by both pathogens is very common and could lead to increased disease severity based on synergism. We therefore co-inoculated sweet orange trees with CaLas and either a mild or a severe strain of CTV, and measured changes of gene expression in host plants. RESULTS: In plants infected with CaLas-B232, the overall alteration in gene expression was much greater in plants co-inoculated with the severe strain of CTV, B6, than when co-infected with the mild strain of CTV, B2. Plants co-infected with CaLas-B232 and either strain of CTV died but trees co-infected with CTV-B2 survived much longer than those co-infected with CTV-B6. Many important pathways were perturbed by both CTV-B2/CaLas-B232 and/or CTV-B6/CaLas-B232, but always more severely by CTV-B6/CaLas-B232. Genes related to cell wall modification and metal transport responded differently to infection by the pathogens in combination than by the same pathogens singly. The expressions of genes encoding phloem proteins and sucrose loading proteins were also differentially altered in response to CTV-B2 or CTV-B6 in combination with CaLas-B232, leading to different phloem environments in plants co-infected by CaLas and mild or severe CTV. CONCLUSIONS: Many host genes were expressed differently in response to dual infection as compared to single infections with the same pathogens. Interactions of the pathogens within the host may lead to a better or worse result for the host plant. CTV-B6 may exert a synergistic effect with CaLas-B232 in weakening the plant; on the other hand, the responses activated by the mild strain CTV-B2 may provide some beneficial effects against CaLas-B232 by increasing the defense response of the host.


Assuntos
Alphaproteobacteria , Citrus sinensis/genética , Citrus sinensis/microbiologia , Citrus sinensis/virologia , Closterovirus , Coinfecção , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Transcriptoma , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Relógios Circadianos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Redes e Vias Metabólicas , Fenótipo , Fotossíntese , Reprodutibilidade dos Testes , Ribossomos/genética , Ribossomos/metabolismo
13.
Sci Rep ; 7: 46467, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28418002

RESUMO

'Candidatus Liberibacter asiaticus' (CaLas), associated with citrus Huanglongbing (HLB), is a non culturable member of the α-proteobacteria. In this study serologically based methods for the detection of CaLas were developed. An anti-outer membrane protein A (OmpA) polyclonal antibody previously produced (in our laboratory) was highly effective for the detection of CaLas from citrus tissues in a simple tissue printing format. The antibody was also used to capture bacteria from periwinkle extracts. About 80% of all field samples analyzed tested positive with both immune tissue printing and qPCR; whereas 95% were positive with at least one of these two methods. When asymptomatic citrus tissues were tested, the tissue printing method gave a higher rate of detection (83%) than the qPCR method (64%). This is consistent with a lower concentration of CaLas DNA, but a higher proportion of viable cells, in the asymptomatic tissues. The immune tissue printing method also highlights the detail of the spatial distribution of 'Ca. Liberibacter asiaticus' in diseased citrus tissues. Both the immune capture PCR and immune tissue printing methods offer the advantages of low cost, high throughput, ease of scaling for multiple samples and simplicity over current PCR-based methods for the detection of 'Ca. Liberibacter asiaticus'.


Assuntos
Anticorpos Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Citrus/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/imunologia , Citrus/imunologia , DNA Bacteriano/análise , Reação em Cadeia da Polimerase , Rhizobiaceae/genética , Sensibilidade e Especificidade , Distribuição Tecidual
14.
PLoS One ; 10(5): e0123939, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946013

RESUMO

'Candidatus Liberibacter asiaticus' (CaLas), a non-cultured member of the α-proteobacteria, is the causal agent of citrus Huanglongbing (HLB). Due to the difficulties of in vitro culture, antibodies against CaLas have not been widely used in studies of this pathogen. We have used an anti-OmpA polyclonal antibody based direct tissue blot immunoassay to localize CaLas in different citrus tissues and in periwinkle leaves. In citrus petioles, CaLas was unevenly distributed in the phloem sieve tubes, and tended to colonize in phloem sieve tubes on the underside of petioles in preference to the upper side of petioles. Both the leaf abscission zone and the junction of the petiole and leaf midrib had fewer CaLas bacteria compared to the main portions of the petiole and the midribs. Colonies of CaLas in phloem sieve tubes were more frequently found in stems with symptomatic leaves than in stems with asymptomatic leaves with an uneven distribution pattern. In serial sections taken from the receptacle to the peduncle, more CaLas were observed in the peduncle sections adjacent to the stem. In seed, CaLas was located in the seed coat. Many fewer CaLas were found in the roots, as compared to the seeds and petioles when samples were collected from trees with obvious foliar symptoms. The direct tissue blot immuno assay was adapted to whole periwinkle leaves infected by CaLas. The pathogen was distributed throughout the lateral veins and the results were correlated with results of qPCR. Our data provide direct spatial and anatomical information for CaLas in planta. This simple and scalable method may facilitate the future research on the interaction of CaLas and host plant.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Citrus sinensis/microbiologia , Helicobacter/isolamento & purificação , Vinca/microbiologia , Anticorpos Antibacterianos/imunologia , Immunoblotting , Floema/microbiologia , Folhas de Planta/microbiologia , Sementes/microbiologia
15.
Bioprocess Biosyst Eng ; 36(10): 1327-38, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23065015

RESUMO

Cellulase from Trichoderma reesei (Celluclast 1.5 L, Novozyme) was immobilized by sol-gel encapsulation, using binary or ternary mixtures of tetramethoxysilane (TMOS) with alkyl- or aryl-substituted trimethoxysilanes as precursors. Optimization of immobilization conditions resulted in 92 % recovery of total enzymatic activity in the best immobilized preparate. The immobilized cellulase exhibiting the highest activity, obtained from tetramethoxysilane and methyltrimethoxysilane precursors at 3:1 molar ratio, was investigated in the hydrolysis reaction of microcrystalline cellulose (Avicel PH101). Although the optimal values did not change significantly, both temperature and pH stabilities of the sol-gel entrapped cellulase improved compared to the native enzyme. Immobilization also conferred superior resistance against the inactivation effect of glucose. Reuse of the sol-gel entrapped cellulase showed 40 % retention of the initial activity after five batch hydrolysis cycles, demonstrating the potential of this biocatalyst for large-scale application.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Enzimas Imobilizadas/metabolismo , Estabilidade Enzimática , Géis , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Especificidade por Substrato , Temperatura , Trichoderma/enzimologia
16.
Molecules ; 17(11): 13045-61, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23124473

RESUMO

Sol-gel entrapment is an efficient immobilization technique that allows preparation of robust and highly stable biocatalysts. Lipase from Candida antarctica B was immobilized by sol-gel entrapment and by sol-gel entrapment combined with adsorption on Celite 545, using a ternary silane precursor system. After optimization of the immobilization protocol, the best enzyme loading was 17.4 mg/g support for sol-gel entrapped lipase and 10.7 mg/g support for samples obtained by entrapment and adsorption. Sol-gel immobilized enzymes showed excellent values of enantiomeric ratio E and activity when ionic liquid 1-octyl-3-methyl-imidazolium tetrafluoroborate was used as additive. Immobilization increased the stability of the obtained biocatalysts in several organic solvents. Excellent operational stability was obtained for the immobilized lipase, maintaining unaltered catalytic activity and enantioselectivity during 15 reuse cycles. The biocatalysts were characterized using scanning electron microscopy (SEM) and fluorescence microscopy. The improved catalytic efficiency of entrapped lipases recommends their application for large-scale kinetic resolution of optically active secondary alcohols.


Assuntos
Terra de Diatomáceas/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Octanóis/química , Acilação , Adsorção , Biocatálise , Estabilidade Enzimática , Esterificação , Géis , Química Verde , Imidazóis/química , Líquidos Iônicos/química , Cinética , Solventes/química , Estereoisomerismo , Compostos de Vinila
17.
Phytopathology ; 100(8): 756-62, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20626279

RESUMO

Huanglongbing, or citrus greening, threatens the global citrus industry. The presumptive pathogens, 'Candidatus Liberibacter asiaticus' and 'Ca. L. americanus' can be transferred from citrus to more easily studied experimental hosts by using holoparasitic dodder plants. However, the interaction between 'Candidatus Liberibacter' spp. and the dodder has not been studied. We combined quantitative polymerase chain reaction with electron microscopy to show that only 65% of tendrils of Cuscuta indecora grown on 'Ca. Liberibacter' spp.-infected host plants had detectable levels of the pathogen. Among tendrils that were colonized by Liberibacter in at least one 2 cm segment, most were not colonized in all segments. Furthermore, the estimated population levels of the pathogen present in serial 2 cm segments of dodder tendrils varied widely and without any consistent pattern. Thus, there was generally not a concentration gradient of the pathogen from the source plant towards the recipient and populations of the pathogen were sometimes found in the distal segments of the dodder plant but not in the proximal or middle segments. Populations of the pathogens ranged from 2 x 10(2) to 3.0 x 10(8) cells per 2 cm segment. On a fresh weight basis, populations as high as 1.4 x 10(10) cells per g of tissue were observed demonstrating that 'Ca. Liberibacter' spp. multiplies well in Cuscuta indecora. However, 55% of individual stem segments did not contain detectable levels of the pathogen, consistent with a pattern of nonuniform colonization similar to that observed in the much more anatomically complex citrus tree. Colonization of dodder by the pathogen is also nonuniform at the ultrastructural level, with adjacent phloem vessel elements being completely full of the pathogen or free of the pathogen. We also observed bacteria in the phloem vessels that belonged to two distinct size classes based on the diameters of cross sections of cells. In other sections from the same tendrils we observed single bacterial cells that were apparently in the process of differentiating between the large and round forms to the long and thin forms (or vice versa). The process controlling this morphological differentiation of the pathogen is not known. The highly reduced and simplified anatomy of the dodder plant as well as its rapid growth rate compared with citrus, and the ability of the plant to support multiplication of the pathogen to high levels, makes it an interesting host plant for further studies of host-pathogen interactions.


Assuntos
Citrus/microbiologia , Cuscuta/microbiologia , Interações Hospedeiro-Patógeno , Rhizobiaceae/fisiologia , Citrus/parasitologia , Cuscuta/fisiologia , Floema/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA