Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(21): 21890-21904, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31140084

RESUMO

In the current phase of world economy, the utilization of the petroleum-based fossil fuels has drastically surpassed the supply. This scenario supplements to the fact that there is an ever increasing necessity for industrialization, specifically in the transportation sector. This requirement and supply of the petroleum and diesel fuels have an astounding impact over the market economy and related commodities. Low viscous and low cetane number biofuels are getting more attention for their usage in engine applications without any further processing. In the present work, lemon peel oil is being fuelled in diesel engine at different timing of injection and exhaust gas recirculation rates. Operation of lemon peel oil (LPO) at standard operating conditions results in increased brake thermal efficiency by consuming less fuel when compared with diesel fuel. The LPO biofuel properties such as boiling point and viscosity being lower leads to better evaporation capacity and thereby results in complete combustion. The advancement in injection timing of 25° bTDC and 27° bTDC resulted in the efficiency increment of 2.17% and 6.19% respectively. Furthermore, the smoke, carbon monoxide and hydrocarbon emissions are decreased in consequence on increased nitrogen oxide (NOx) emissions. Hence, in order to decrease the content of nitrogen oxide emissions in the exhaust, exhaust gas recirculation (EGR) has been implemented in the present work. For EGR rate of 10% and 20%, the NOx emissions is reduced by 43% and 46% respectively for 27° bTDC injection timing. Thus, the advancement of injection timing with optimum EGR is a viable option for the lemon peel oil biofuel in diesel engine with superior performance and emission output.


Assuntos
Biocombustíveis , Óleos de Plantas/química , Emissões de Veículos/análise , Biocombustíveis/análise , Monóxido de Carbono/análise , Desenho de Equipamento , Gasolina/análise , Hidrocarbonetos/análise , Óxidos de Nitrogênio/análise , Fumaça , Fatores de Tempo
2.
Int J Yoga ; 11(3): 201-207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233113

RESUMO

CONTEXT: Yoga has origins speculated to date back to pre-Vedic Indian period and is practiced as a common exercise, both in India as well as all around the world. Although the yoga practices are ages old, there is not much research literature available. Moreover, with the advancement in technology, the modern analysis tools are not used up to their full potential. AIMS: This research focuses on developing a framework for analyzing trikonasana, using the optical motion capture system, and validating the noninvasive method for analyzing muscle activity in prominent muscles while performing trikonasana. SUBJECTS AND METHODS: We have adopted the noninvasive analysis method using optical motion capture system OptiTrack™ for recording the human motion and musculoskeletal modeling software LifeMod™ to analyze the muscle activity while performing trikonasana. Surface electromyography (sEMG) studies were performed using Trigno™ (Delsys Inc.) wireless sEMG sensors to validate the LifeMod simulation results pertaining muscle activation. RESULTS: It was observed that the characteristics of the sEMG match to that of the estimated muscle tension from the architecture used in this study. The muscle groups such as external right obliques muscles, rectus abdominis of the front leg, and gluteus maximus and gluteus medius of the rear leg were observed to undergo major activation during an isometric contraction while performing trikonasana. The magnitudes of the muscle tension during the left bend depict a close resemblance to the muscle tension magnitudes during the right bend. CONCLUSIONS: The optical motion capture system and musculoskeletal modeling software can be used to analyze muscle activity in any yoga exercise noninvasively. Since the yoga exercises majorly require the practitioner to maintain a certain posture for a considerable duration, our approach can be used to find the important muscles involved and their corresponding muscle tension when they undergo isometric contraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA