Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134929

RESUMO

WormBase (www.wormbase.org) is the central repository for the genetics and genomics of the nematode Caenorhabditis elegans. We provide the research community with data and tools to facilitate the use of C. elegans and related nematodes as model organisms for studying human health, development, and many aspects of fundamental biology. Throughout our 22-year history, we have continued to evolve to reflect progress and innovation in the science and technologies involved in the study of C. elegans. We strive to incorporate new data types and richer data sets, and to provide integrated displays and services that avail the knowledge generated by the published nematode genetics literature. Here, we provide a broad overview of the current state of WormBase in terms of data type, curation workflows, analysis, and tools, including exciting new advances for analysis of single-cell data, text mining and visualization, and the new community collaboration forum. Concurrently, we continue the integration and harmonization of infrastructure, processes, and tools with the Alliance of Genome Resources, of which WormBase is a founding member.


Assuntos
Caenorhabditis , Nematoides , Animais , Caenorhabditis/genética , Caenorhabditis elegans/genética , Bases de Dados Genéticas , Genoma , Genômica , Humanos , Nematoides/genética
2.
Nucleic Acids Res ; 50(D1): D996-D1003, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791415

RESUMO

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Assuntos
Bases de Dados Genéticas , Genômica , Internet , Software , Animais , Biologia Computacional , Genoma Bacteriano/genética , Genoma Fúngico/genética , Genoma de Planta/genética , Plantas/classificação , Plantas/genética , Vertebrados/classificação , Vertebrados/genética
3.
Commun Biol ; 3(1): 656, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168940

RESUMO

Haemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants and has become a key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Here, we report using PacBio long-read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome for the MHco3(ISE).N1 isolate. We show a remarkable pattern of conservation of chromosome content with Caenorhabditis elegans, but almost no conservation of gene order. Short and long-read transcriptome sequencing allowed us to define coordinated transcriptional regulation throughout the parasite's life cycle and refine our understanding of cis- and trans-splicing. Finally, we provide a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes and extend the experimental tractability of this model parasitic nematode in understanding helminth biology, drug discovery and vaccine development, as well as important adaptive traits such as drug resistance.


Assuntos
Genoma Helmíntico/genética , Haemonchus/genética , Modelos Biológicos , Transcriptoma/genética , Animais , Caenorhabditis elegans/genética , Cromossomos/genética , Feminino , Genômica , Hemoncose/parasitologia , Haemonchus/metabolismo , Haemonchus/fisiologia , Humanos , Enteropatias Parasitárias/parasitologia , Estágios do Ciclo de Vida/genética , Masculino
4.
Microbiol Resour Announc ; 9(24)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527783

RESUMO

Lymphatic filariasis affects ∼120 million people and can result in elephantiasis and hydrocele. Here, we report the nearly complete genome sequence of the best-studied causative agent of lymphatic filariasis, Brugia malayi The assembly contains four autosomes, an X chromosome, and only eight gaps but lacks a contiguous sequence for the known Y chromosome.

5.
Nat Commun ; 11(1): 1964, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327641

RESUMO

Sex determination mechanisms often differ even between related species yet the evolution of sex chromosomes remains poorly understood in all but a few model organisms. Some nematodes such as Caenorhabditis elegans have an XO sex determination system while others, such as the filarial parasite Brugia malayi, have an XY mechanism. We present a complete B. malayi genome assembly and define Nigon elements shared with C. elegans, which we then map to the genomes of other filarial species and more distantly related nematodes. We find a remarkable plasticity in sex chromosome evolution with several distinct cases of neo-X and neo-Y formation, X-added regions, and conversion of autosomes to sex chromosomes from which we propose a model of chromosome evolution across different nematode clades. The phylum Nematoda offers a new and innovative system for gaining a deeper understanding of sex chromosome evolution.


Assuntos
Evolução Molecular , Nematoides/genética , Infecções por Nematoides/parasitologia , Cromossomos Sexuais/genética , Animais , Brugia Malayi/genética , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Feminino , Regulação da Expressão Gênica , Genoma Helmíntico/genética , Humanos , Masculino , Nematoides/classificação , Sequências Repetitivas de Ácido Nucleico/genética , Processos de Determinação Sexual/genética
6.
Nucleic Acids Res ; 48(D1): D689-D695, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31598706

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of interfaces to genomic data across the tree of life, including reference genome sequence, gene models, transcriptional data, genetic variation and comparative analysis. Data may be accessed via our website, online tools platform and programmatic interfaces, with updates made four times per year (in synchrony with Ensembl). Here, we provide an overview of Ensembl Genomes, with a focus on recent developments. These include the continued growth, more robust and reproducible sets of orthologues and paralogues, and enriched views of gene expression and gene function in plants. Finally, we report on our continued deeper integration with the Ensembl project, which forms a key part of our future strategy for dealing with the increasing quantity of available genome-scale data across the tree of life.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Algoritmos , Animais , Caenorhabditis elegans/genética , Genômica , Internet , Anotação de Sequência Molecular , Fenótipo , Plantas/genética , Valores de Referência , Software , Interface Usuário-Computador
7.
Nucleic Acids Res ; 48(D1): D762-D767, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31642470

RESUMO

WormBase (https://wormbase.org/) is a mature Model Organism Information Resource supporting researchers using the nematode Caenorhabditis elegans as a model system for studies across a broad range of basic biological processes. Toward this mission, WormBase efforts are arranged in three primary facets: curation, user interface and architecture. In this update, we describe progress in each of these three areas. In particular, we discuss the status of literature curation and recently added data, detail new features of the web interface and options for users wishing to conduct data mining workflows, and discuss our efforts to build a robust and scalable architecture by leveraging commercial cloud offerings. We conclude with a description of WormBase's role as a founding member of the nascent Alliance of Genome Resources.


Assuntos
Caenorhabditis elegans/genética , Bases de Dados Genéticas , Genes de Helmintos , Animais , Mineração de Dados , Genômica , Internet , Interface Usuário-Computador
8.
Methods Mol Biol ; 1757: 399-470, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761466

RESUMO

WormBase ( www.wormbase.org ) provides the nematode research community with a centralized database for information pertaining to nematode genes and genomes. As more nematode genome sequences are becoming available and as richer data sets are published, WormBase strives to maintain updated information, displays, and services to facilitate efficient access to and understanding of the knowledge generated by the published nematode genetics literature. This chapter aims to provide an explanation of how to use basic features of WormBase, new features, and some commonly used tools and data queries. Explanations of the curated data and step-by-step instructions of how to access the data via the WormBase website and available data mining tools are provided.


Assuntos
Caenorhabditis elegans/genética , Bases de Dados Genéticas , Genoma Helmíntico , Genômica , Animais , Biologia Computacional/métodos , Mineração de Dados/métodos , Epistasia Genética , Ontologia Genética , Genes de Helmintos , Genômica/métodos , Humanos , Fenótipo , Proteoma , Ferramenta de Busca , Software , Transcriptoma , Interface Usuário-Computador , Navegador
9.
BMC Bioinformatics ; 19(1): 189, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29843602

RESUMO

BACKGROUND: Genome annotation is of key importance in many research questions. The identification of protein-coding genes is often based on transcriptome sequencing data, ab-initio or homology-based prediction. Recently, it was demonstrated that intron position conservation improves homology-based gene prediction, and that experimental data improves ab-initio gene prediction. RESULTS: Here, we present an extension of the gene prediction program GeMoMa that utilizes amino acid sequence conservation, intron position conservation and optionally RNA-seq data for homology-based gene prediction. We show on published benchmark data for plants, animals and fungi that GeMoMa performs better than the gene prediction programs BRAKER1, MAKER2, and CodingQuarry, and purely RNA-seq-based pipelines for transcript identification. In addition, we demonstrate that using multiple reference organisms may help to further improve the performance of GeMoMa. Finally, we apply GeMoMa to four nematode species and to the recently published barley reference genome indicating that current annotations of protein-coding genes may be refined using GeMoMa predictions. CONCLUSIONS: GeMoMa might be of great utility for annotating newly sequenced genomes but also for finding homologs of a specific gene or gene family. GeMoMa has been published under GNU GPL3 and is freely available at http://www.jstacs.de/index.php/GeMoMa .


Assuntos
Perfilação da Expressão Gênica , Genes Fúngicos , Genes de Plantas , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos , Software , Animais , Genômica , Hordeum/genética , Íntrons , Anotação de Sequência Molecular , Nematoides/genética
10.
Nucleic Acids Res ; 46(D1): D869-D874, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29069413

RESUMO

WormBase (http://www.wormbase.org) is an important knowledge resource for biomedical researchers worldwide. To accommodate the ever increasing amount and complexity of research data, WormBase continues to advance its practices on data acquisition, curation and retrieval to most effectively deliver comprehensive knowledge about Caenorhabditis elegans, and genomic information about other nematodes and parasitic flatworms. Recent notable enhancements include user-directed submission of data, such as micropublication; genomic data curation and presentation, including additional genomes and JBrowse, respectively; new query tools, such as SimpleMine, Gene Enrichment Analysis; new data displays, such as the Person Lineage browser and the Summary of Ontology-based Annotations. Anticipating more rapid data growth ahead, WormBase continues the process of migrating to a cutting-edge database technology to achieve better stability, scalability, reproducibility and a faster response time. To better serve the broader research community, WormBase, with five other Model Organism Databases and The Gene Ontology project, have begun to collaborate formally as the Alliance of Genome Resources.


Assuntos
Bases de Dados Genéticas , Genoma , Nematoides/genética , Animais , Caenorhabditis/genética , Caenorhabditis elegans/genética , Curadoria de Dados , Mineração de Dados , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Previsões , Ontologia Genética , Humanos , Armazenamento e Recuperação da Informação , Platelmintos/genética , Editoração , Interferência de RNA , Alinhamento de Sequência , Interface Usuário-Computador , Navegador
11.
Nucleic Acids Res ; 46(D1): D802-D808, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29092050

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including genome sequence, gene models, transcript sequence, genetic variation, and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments and expansions. These include the incorporation of almost 20 000 additional genome sequences and over 35 000 tracks of RNA-Seq data, which have been aligned to genomic sequence and made available for visualization. Other advances since 2015 include the release of the database in Resource Description Framework (RDF) format, a large increase in community-derived curation, a new high-performance protein sequence search, additional cross-references, improved annotation of non-protein-coding genes, and the launch of pre-release and archival sites. Collectively, these changes are part of a continuing response to the increasing quantity of publicly-available genome-scale data, and the consequent need to archive, integrate, annotate and disseminate these using automated, scalable methods.


Assuntos
Archaea/genética , Bactérias/genética , Bases de Dados Genéticas , Bases de Dados de Proteínas , Eucariotos/genética , Genômica , Sequência de Aminoácidos , Animais , Sequência de Bases , Mineração de Dados , Previsões , Genoma , Anotação de Sequência Molecular , RNA/genética , Interface Usuário-Computador
12.
Nucleic Acids Res ; 44(D1): D774-80, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26578572

RESUMO

WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research.


Assuntos
Caenorhabditis elegans/genética , Bases de Dados Genéticas , Genoma Helmíntico , Genômica , Nematoides/genética , Animais , Genes de Helmintos , Anotação de Sequência Molecular , Platelmintos/genética , Software
13.
Nucleic Acids Res ; 44(D1): D574-80, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26578574

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces.


Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Invertebrados/genética , Animais , Diploide , Eucariotos/genética , Variação Genética , Genoma , Poliploidia , Alinhamento de Sequência
14.
Nucleic Acids Res ; 42(Database issue): D546-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163254

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.


Assuntos
Bases de Dados Genéticas , Genoma , Animais , Grão Comestível/genética , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Genômica , Internet , Anotação de Sequência Molecular , Software
15.
Nucleic Acids Res ; 42(Database issue): D789-93, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24194605

RESUMO

WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans. With an electronic history predating the World Wide Web, WormBase contains information ranging from the sequence and phenotype of individual alleles to genome-wide studies generated using next-generation sequencing technologies. In recent years, we have expanded the contents to include data on additional nematodes of agricultural and medical significance, bringing the knowledge of C. elegans to bear on these systems and providing support for underserved research communities. Manual curation of the primary literature remains a central focus of the WormBase project, providing users with reliable, up-to-date and highly cross-linked information. In this update, we describe efforts to organize the original atomized and highly contextualized curated data into integrated syntheses of discrete biological topics. Next, we discuss our experiences coping with the vast increase in available genome sequences made possible through next-generation sequencing platforms. Finally, we describe some of the features and tools of the new WormBase Web site that help users better find and explore data of interest.


Assuntos
Caenorhabditis elegans/genética , Bases de Dados Genéticas , Genoma Helmíntico , Animais , Internet , Anotação de Sequência Molecular , Nematoides/genética
16.
Nucleic Acids Res ; 40(Database issue): D91-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22067447

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrative resource for genome-scale data from non-vertebrate species. The project exploits and extends technology (for genome annotation, analysis and dissemination) developed in the context of the (vertebrate-focused) Ensembl project and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. Since its launch in 2009, Ensembl Genomes has undergone rapid expansion, with the goal of providing coverage of all major experimental organisms, and additionally including taxonomic reference points to provide the evolutionary context in which genes can be understood. Against the backdrop of a continuing increase in genome sequencing activities in all parts of the tree of life, we seek to work, wherever possible, with the communities actively generating and using data, and are participants in a growing range of collaborations involved in the annotation and analysis of genomes.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Genoma , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Invertebrados/genética , Anotação de Sequência Molecular , Integração de Sistemas
17.
Nucleic Acids Res ; 40(Database issue): D735-41, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22067452

RESUMO

Since its release in 2000, WormBase (http://www.wormbase.org) has grown from a small resource focusing on a single species and serving a dedicated research community, to one now spanning 15 species essential to the broader biomedical and agricultural research fields. To enhance the rate of curation, we have automated the identification of key data in the scientific literature and use similar methodology for data extraction. To ease access to the data, we are collaborating with journals to link entities in research publications to their report pages at WormBase. To facilitate discovery, we have added new views of the data, integrated large-scale datasets and expanded descriptions of models for human disease. Finally, we have introduced a dramatic overhaul of the WormBase website for public beta testing. Designed to balance complexity and usability, the new site is species-agnostic, highly customizable, and interactive. Casual users and developers alike will be able to leverage the public RESTful application programming interface (API) to generate custom data mining solutions and extensions to the site. We report on the growth of our database and on our work in keeping pace with the growing demand for data, efforts to anticipate the requirements of users and new collaborations with the larger science community.


Assuntos
Caenorhabditis elegans/genética , Bases de Dados Genéticas , Genoma Helmíntico , Nematoides/genética , Animais , Caenorhabditis/genética , Caenorhabditis elegans/anatomia & histologia , Gráficos por Computador , Perfilação da Expressão Gênica , Genômica , Internet , Anotação de Sequência Molecular , Fenótipo
18.
Worm ; 1(1): 15-21, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24058818

RESUMO

WormBase (www.wormbase.org) has been serving the scientific community for over 11 years as the central repository for genomic and genetic information for the soil nematode Caenorhabditis elegans. The resource has evolved from its beginnings as a database housing the genomic sequence and genetic and physical maps of a single species, and now represents the breadth and diversity of nematode research, currently serving genome sequence and annotation for around 20 nematodes. In this article, we focus on WormBase's role of genome sequence annotation, describing how we annotate and integrate data from a growing collection of nematode species and strains. We also review our approaches to sequence curation, and discuss the impact on annotation quality of large functional genomics projects such as modENCODE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA