Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 168, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261095

RESUMO

In the food industry, successful bacterial pathogen colonization and persistence begin with their adhesion to a surface, followed by the spatial development of mature biofilm of public health concerns. Compromising bacterial settlement with natural inhibitors is a promising alternative to conventional anti-fouling treatments typically based on chemical biocides that contribute to the growing burden of antimicrobial resistance. In this study, three extracellular polymeric substance (EPS) fractions extracted from microalgae biofilms of Cylindrotheca closterium (fraction C) and Tetraselmis suecica (fraction Ta rich in insoluble scale structure and fraction Tb rich in soluble EPS) were screened for their anti-adhesive properties, against eight human food-borne pathogens belonging to Escherichia coli, Staphylococcus aureus, Salmonella enterica subsp. enterica, and Listeria monocytogenes species. The results showed that the fraction Ta was the most effective inducing statistically significant reduction for three strains of E. coli, S. aureus, and L. monocytogenes. Overall, EPSs coating on polystyrene surfaces of the different fractions increased the hydrophilic character of the support. Differences in bacterial adhesion on the different coated surfaces could be explained by several dissimilarities in the structural and physicochemical EPS compositions, according to HPLC and ATR-FTIR analysis. Interestingly, while fractions Ta and Tb were extracted from the same microalgal culture, distinct adhesion patterns were observed, highlighting the importance of the extraction process. Overall, the findings showed that EPS extracted from microalgal photosynthetic biofilms can exhibit anti-adhesive effects against food-borne pathogens and could help develop sustainable and non-toxic anti-adhesive surfaces for the food industry. KEY POINTS: •EPSs from a biofilm-based culture of C. closterium/T. suecica were characterized. •Microalgal EPS extracted from T. suecica biofilms showed bacterial anti-adhesive effects. •The anti-adhesive effect is strain-specific and affects both Gram - and Gram + bacteria.


Assuntos
Clorófitas , Closterium , Microalgas , Humanos , Aderência Bacteriana , Matriz Extracelular de Substâncias Poliméricas , Escherichia coli , Staphylococcus aureus , Biofilmes
2.
Harmful Algae ; 119: 102320, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344192

RESUMO

This paper summarizes the research conducted by the partners of the EU co-funded CoCliME project to ascertain the ecological, human health and economic impacts of Ostreopsis (mainly O. cf. ovata) blooms in the NW Mediterranean coasts of France, Monaco and Spain. This knowledge is necessary to design strategies to prevent, mitigate and, if necessary, adapt to the impacts of these events in the future and in other regions. Ostreopsis proliferations in the Mediterranean have been related to massive mortalities of benthic organisms and to symptoms of respiratory and cutaneous irritation in humans. A six-year epidemiologic study in a Ostreopsis hot spot in Catalonia and the accumulated experience of the French Mediterranean National Ostreopsis Surveillance Network confirm the main effects of these blooms on human health in the NW Mediterranean. The impacts are associated to direct exposure to seawater with high Ostreopsis cell concentrations and to inhalation of aerosols containing unknown irritative chemicals produced under certain circumstances during the blooms. A series of mild acute symptoms, affecting the entire body as well as the ophthalmic, digestive, respiratory and dermatologic systems have been identified. A main remaining challenge is to ascertain the effects of the chronic exposure to toxic Ostreopsis blooms. Still, the mechanisms involved in the deletereous effects of Ostreopsis blooms are poorly understood. Characterizing the chemical nature of the harmful compounds synthesized by Ostreopsis as well as the role of the mucus by which cells attach to benthic surfaces, requires new technical approaches (e.g., metabolomics) and realistic and standardized ecotoxicology tests. It is also necessary to investigate how palytoxin analogues produced by O. cf. ovata could be transferred through the marine food webs, and to evaluate the real risk of seafood poisonings in the area. On the other hand, the implementation of beach monitoring and surveillance systems in the summer constitutes an effective strategy to prevent the impacts of Ostreopsis on human health. In spite of the confirmed noxious effects, a survey of tourists and residents in Nice and Monaco to ascertain the socioeconomic costs of Ostreopsis blooms indicated that the occurrence of these events and their impacts are poorly known by the general public. In relationship with a plausible near future increase of Ostreopsis blooms in the NW Mediterranean coast, this survey showed that a substantial part of the population might continue to go to the beaches during Ostreopsis proliferations and thus could be exposed to health risks. In contrast, some people would not visit the affected areas, with the potential subsequent negative impacts on coastal recreational and touristic activities. However, at this stage, it is too early to accurately assess all the economic impacts that a potentially increasing frequency and biogeographic expansion of the events might cause in the future.


Assuntos
Dinoflagellida , Toxinas Marinhas , Humanos , Toxinas Marinhas/toxicidade , Dinoflagellida/química , Água do Mar/química , Estações do Ano , Fatores Socioeconômicos
3.
Harmful Algae ; 110: 102144, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887015

RESUMO

Ostreopsis cf. ovata is a benthic dinoflagellate very common in tropical and temperate coastal areas, particularly in the Mediterranean Sea. This species is also found in the plankton, i.e. swimming in the water column or in aggregates floating at the sea surface. The potential links between the planktonic and benthic populations influencing their relative distribution in the water column and attached to the benthic substrate are poorly understood. To shed light on this question, a high-frequency temporal monitoring was conducted in the Villefranche bay (France) to determine the abundance of (1) epibenthic cells attached to macroalgae, (2) planktonic cells in the water column and (3) cells in aggregates floating at the sea water surface (hereafter, referred to sea surface cells) . This monitoring was realized over 3 consecutive years (2018, 2019 and 2020) and at different phases of the bloom (exponential phase - 2020, peak - 2019 and decline phase - 2018). Strong variations in benthic and planktonic O. cf. ovata abundances were observed over the 24 h sampling cycles conducted in three consecutive years. The three populations, planktonic, benthic and sea surface cells, exhibited the highest numbers during the day (light) hours and lowest values at night in 2018 and 2019. In 2020, however, benthic abundances did not differ significantly between light and dark periods. Moreover, epibenthic cells abundances peaked in the morning, followed by the peak of the cells in the plankton and in the surface aggregates during the afternoon. Monitoring of O. cf. ovata is often based on a single sampling per day without precise indications of sampling time and shows great variability in O. cf. ovata abundances. Our observations of daily variations in cell abundances along the water column clearly indicate that time and water column depth of sampling constitute a great source of variability and have to be considered when designing new monitoring strategies to reduce variability and to harmonize data acquisition and international comparisons.


Assuntos
Dinoflagellida , França , Mar Mediterrâneo , Plâncton , Água do Mar
4.
Microorganisms ; 8(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825358

RESUMO

Macrophage Migration Inhibitory Factors (MIF) are pivotal cytokines/chemokines for vertebrate immune systems. MIFs are typically soluble single-domain proteins that are conserved across plant, fungal, protist, and metazoan kingdoms, but their functions have not been determined in most phylogenetic groups. Here, we describe an atypical multidomain MIF protein. The marine dinoflagellate Lingulodinium polyedra produces a transmembrane protein with an extra-cytoplasmic MIF domain, which localizes to cell-wall-associated membranes and vesicular bodies. This protein is also present in the membranes of extracellular vesicles accumulating at the secretory pores of the cells. Upon exposure to biotic stress, L. polyedra exhibits reduced expression of the MIF gene and reduced abundance of the surface-associated protein. The presence of LpMIF in the membranes of secreted extracellular vesicles evokes the fascinating possibility that LpMIF may participate in intercellular communication and/or interactions between free-living organisms in multispecies planktonic communities.

5.
Aquat Toxicol ; 223: 105485, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32353662

RESUMO

Even though HPLC-MS is commonly used to quantify the toxin content of Ostreopsis spp. cells, there is a need to develop easy-to-use toxicological tests to set thresholds during Ostreopsis spp. blooms. The crustacean Artemia has been widely used to evaluate the presence and toxicity of chemicals and biological contaminants and we anticipated that it could also be useful to test Ostreopsis spp. toxicity. Its relevance was first assessed by investigating the variability of the toxic effects among Ostreopsis spp. strains and throughout the dinoflagellate life cycle in combination with chemical analyses of the toxinic content by UHPLC-HRMS. After testing the toxicity of fractions prepared from Ostreopsis spp. cells, the known ova- and paly-toxins were not the only toxic metabolites to Artemia franciscana, indicating that other toxic compounds synthesized by Ostreopsis spp. still remain to be identified. To extend the bioassay to in situ monitoring, the toxicity of the benthic microalgal consortium was tested during a natural bloom of Ostreopsis cf. ovata in the NW Mediterranean Sea. The results highlight the accuracy and sensitivity of the ecotoxicological assay with Artemia franciscana to assess the toxicity of Ostreopsis spp. blooms.


Assuntos
Artemia/efeitos dos fármacos , Dinoflagellida/efeitos dos fármacos , Monitoramento Ambiental/métodos , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Artemia/química , Bioensaio , Dinoflagellida/química , Espectrometria de Massas , Mar Mediterrâneo , Microalgas/química
6.
Harmful Algae ; 92: 101727, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113596

RESUMO

Over the last fifteen years, blooms of the genus Ostreopsis have been reported more frequently and at higher abundances in the Mediterranean area. Ostreopsis cf. ovata is known to produce ovatoxins (OVTXs), structural analogues of palytoxin, which is one of the most potent non-polymeric toxins. However, the production of OVTXs is poorly characterized in situ. The present study focuses on toxin content and profile according to the bloom phase during summer 2017 in Villefranche-sur-Mer, France (NW Mediterranean Sea), depth (from 0.5 to 5 m) and three different macroalgal substrates of this epiphytic dinoflagellate (Padina pavonica, Dictyota spp. and Halopteris scoparia). Ovatoxin quantification of all samples was performed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The bloom started at the end of June and declined in mid-July, showing the typical seasonal pattern of the NW Mediterranean Sea area. The peak was observed on the 10 July with 1.8 × 106 cells/g FW and 1.7 × 104 cells/L for benthic and planktonic cells, respectively. Total toxin content of cells, collected using artificial substrates, increased during the exponential and stationary growth phases. After reaching a maximum concentration of 9.2 pg/cell on 18 July, toxin concentration decreased and remained stable from 25 July until the end of monitoring. A decreasing trend of the abundance and of the associated total toxin content was noted with depth. Finally, the decreasing order of maximal epiphytic concentration of O. cf. ovata was: Dictyota spp. (8.3 × 105 cells/g FW), H. scoparia (3.1 × 105 cells/g FW) and P. pavonica (1.6 × 105 cells/g FW). Interestingly, the highest OVTX quota was obtained in cells present on Halopteris scoparia, then on Dictyota spp. and Padina pavonica. This suggests that the nature of the macroalgal substrate influences both growth and toxin production of O. cf. ovata and further work will be required to understand the underlying mechanisms (e.g., competition for nutrition, pH or allelopathic interaction). However, the toxin profiles (i.e., the proportion of each ovatoxin analogue) were not affected by any of the studied parameters (bloom phase, depth, macroalgae or artificial substrates).


Assuntos
Dinoflagellida , Toxinas Marinhas , Cromatografia Líquida , França , Toxinas Marinhas/análise , Mar Mediterrâneo , Espectrometria de Massas em Tandem
7.
Harmful Algae ; 75: 35-44, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29778224

RESUMO

For decades the microphytobenthos assemblage in the coastal Mediterranean Sea has been regularly colonized by the toxic benthic dinoflagellate Ostreopsis cf. ovata. This harmful algal species is a toxin producer and occupies the same ecological niche as various diatoms. Surprisingly, there are only few insights reported on the physiological responses of diatoms to blooms of O. cf. ovata The chemical interactions of O. cf. ovata with the co-occurring diatom Licmophora paradoxa was studied using a bioassay (measuring impact of cell-free culture filtrate) and a co-culture approach (separate by a membrane) to investigate the effects of the exometabolome and its mode of action. Bioassays highlighted a toxic effect of the exometabolome of O. cf. ovata on the diatom photosynthetic activity. However, the co-cultures revealed that these toxic effects do not occur through remote allelopathy. Contact or close interactions between cells of the two species is most likely needed to impair the diatom growth. Ovatoxins are suspected to be the toxic metabolites secreted by O. cf. ovata although the current set of data did not give confirmation of this assumption. Interestingly, the exometabolome of L. paradoxa impaired the growth and the photochemistry of O. cf. ovata in both bioassays and co-cultures. Some biomarkers possibly involved for the effect were identified using a metabolomic approach and may correspond to oxylipins, however a bacterial source of the bioactive metabolites is also considered.


Assuntos
Alelopatia , Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Proliferação Nociva de Algas , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA