Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 1587, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949069

RESUMO

Rivers are among the most diverse, dynamic, and productive ecosystems on Earth. River flow regimes are constantly changing, but characterizing and understanding such changes have been challenging from a long-term and global perspective. By analyzing water extent variations observed from four-decade Landsat imagery, we here provide a global attribution of the recent changes in river regime to morphological dynamics (e.g., channel shifting and anabranching), expansion induced by new dams, and hydrological signals of widening and narrowing. Morphological dynamics prevailed in ~20% of the global river area. Booming reservoir constructions, mostly skewed in Asia and South America, contributed to ~32% of the river widening. The remaining hydrological signals were characterized by contrasting hotspots, including prominent river widening in alpine and pan-Arctic regions and narrowing in the arid/semi-arid continental interiors, driven by varying trends in climate forcing, cryospheric response to warming, and human water management. Our findings suggest that the recent river extent dynamics diverge based on hydroclimate and socio-economic conditions, and besides reflecting ongoing morphodynamical processes, river extent changes show close connections with external forcings, including climate change and anthropogenic interference.

3.
Nature ; 613(7944): 449-459, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653564

RESUMO

River networks represent the largest biogeochemical nexus between the continents, ocean and atmosphere. Our current understanding of the role of rivers in the global carbon cycle remains limited, which makes it difficult to predict how global change may alter the timing and spatial distribution of riverine carbon sequestration and greenhouse gas emissions. Here we review the state of river ecosystem metabolism research and synthesize the current best available estimates of river ecosystem metabolism. We quantify the organic and inorganic carbon flux from land to global rivers and show that their net ecosystem production and carbon dioxide emissions shift the organic to inorganic carbon balance en route from land to the coastal ocean. Furthermore, we discuss how global change may affect river ecosystem metabolism and related carbon fluxes and identify research directions that can help to develop better predictions of the effects of global change on riverine ecosystem processes. We argue that a global river observing system will play a key role in understanding river networks and their future evolution in the context of the global carbon budget.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Ecossistema , Rios , Dióxido de Carbono/análise , Sequestro de Carbono , Gases de Efeito Estufa/análise
4.
Water Resour Res ; 58(8): e2021WR031712, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36249279

RESUMO

Changes in a river's width reflect natural and anthropogenic impacts on local and upstream/downstream hydraulic and hydrologic processes. Temporal variation of river width also impacts biogeochemical exchange and reflects geomorphologic evolution. However, while global maps of mean river width and dynamic water surface extent exist, there is currently no standardized global assessment of river widths that documents changes over time. Therefore, we made repeated width measurements from Landsat images for all rivers wider than 90 m collected from 1984 to 2020 (named Global LOng-term river Width, GLOW), which consists of ∼1.2 billion cross-sectional river width measurements, with an average of 3,000 width measurements per 10-km reach. With GLOW, we investigated the temporal variations of global river width, quantified by the interquartile range (IQR) and temporal trend. We found that 85% of global rivers have a width IQR <150 m. We also found that 37% of global river segments show significant temporal trends in width over the past 37 years, and this number is higher (46%) for human-regulated rivers. Further, we leveraged machine learning to identify the most important factors explaining river width variations and revealed that these driving factors are significantly different between free-flowing and non-free-flowing rivers. Specifically, the most important factor driving temporal variations in river width is the climate for free-flowing rivers, and is soil condition for human-impacted rivers. Finally, we anticipate that this study and the public release of GLOW will improve the understanding of river dynamics and catalyze additional interdisciplinary studies.

5.
Water Resour Res ; 57(5): e2020WR029123, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34219822

RESUMO

Lakes are often defined by seasonal cycles. The seasonal timing, or phenology, of many lake processes are changing in response to human activities. However, long-term records exist for few lakes, and extrapolating patterns observed in these lakes to entire landscapes is exceedingly difficult using the limited number of available in situ observations. Limited landscape-level observations mean we do not know how common shifts in lake phenology are at macroscales. Here, we use a new remote sensing data set, LimnoSat-US, to analyze U.S. summer lake color phenology between 1984 and 2020 across more than 26,000 lakes. Our results show that summer lake color seasonality can be generalized into five distinct phenology groups that follow well-known patterns of phytoplankton succession. The frequency with which lakes transition from one phenology group to another is tied to lake and landscape level characteristics. Lakes with high inflows and low variation in their seasonal surface area are generally more stable, while lakes in areas with high interannual variations in climate and catchment population density show less stability. Our results reveal previously unexamined spatiotemporal patterns in lake seasonality and demonstrate the utility of LimnoSat-US, which, with over 22 million remote sensing observations of lakes, creates novel opportunities to examine changing lake ecosystems at a national scale.

6.
Sci Adv ; 6(48)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33246963

RESUMO

Artisanal and small-scale gold mining (ASGM) is the largest global source of anthropogenic mercury emissions. However, little is known about how effectively mercury released from ASGM is converted into the bioavailable form of methylmercury in ASGM-altered landscapes. Through examination of ASGM-impacted river basins in Peru, we show that lake area in heavily mined watersheds has increased by 670% between 1985 and 2018 and that lakes in this area convert mercury into methylmercury at net rates five to seven times greater than rivers. These results suggest that synergistic increases in lake area and mercury loading associated with ASGM are substantially increasing exposure risk for people and wildlife. Similarly, marked increases in lake area in other ASGM hot spots suggest that "hydroscape" (hydrological landscape) alteration is an important and previously unrecognized component of mercury risk from ASGM.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Monitoramento Ambiental , Ouro , Humanos , Mineração , Rios
7.
Nature ; 577(7788): 69-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31894147

RESUMO

More than one-third of Earth's landmass is drained by rivers that seasonally freeze over. Ice transforms the hydrologic1,2, ecologic3,4, climatic5 and socio-economic6-8 functions of river corridors. Although river ice extent has been shown to be declining in many regions of the world1, the seasonality, historical change and predicted future changes in river ice extent and duration have not yet been quantified globally. Previous studies of river ice, which suggested that declines in extent and duration could be attributed to warming temperatures9,10, were based on data from sparse locations. Furthermore, existing projections of future ice extent are based solely on the location of the 0-°C isotherm11. Here, using satellite observations, we show that the global extent of river ice is declining, and we project a mean decrease in seasonal ice duration of 6.10 ± 0.08 days per 1-°C increase in global mean surface air temperature. We tracked the extent of river ice using over 400,000 clear-sky Landsat images spanning 1984-2018 and observed a mean decline of 2.5 percentage points globally in the past three decades. To project future changes in river ice extent, we developed an observationally calibrated and validated model, based on temperature and season, which reduced the mean bias by 87 per cent compared with the 0-degree-Celsius isotherm approach. We applied this model to future climate projections for 2080-2100: compared with 2009-2029, the average river ice duration declines by 16.7 days under Representative Concentration Pathway (RCP) 8.5, whereas under RCP 4.5 it declines on average by 7.3 days. Our results show that, globally, river ice is measurably declining and will continue to decline linearly with projected increases in surface air temperature towards the end of this century.


Assuntos
Gelo , Modelos Teóricos , Rios/química , Previsões , Fenômenos Geológicos , Imagens de Satélites
8.
Water Resour Res ; 55(8): 6499-6516, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31762499

RESUMO

Spatiotemporally continuous global river discharge estimates across the full spectrum of stream orders are vital to a range of hydrologic applications, yet they remain poorly constrained. Here we present a carefully designed modeling effort (Variable Infiltration Capacity land surface model and Routing Application for Parallel computatIon of Discharge river routing model) to estimate global river discharge at very high resolutions. The precipitation forcing is from a recently published 0.1° global product that optimally merged gauge-, reanalysis-, and satellite-based data. To constrain runoff simulations, we use a set of machine learning-derived, global runoff characteristics maps (i.e., runoff at various exceedance probability percentiles) for grid-by-grid model calibration and bias correction. To support spaceborne discharge studies, the river flowlines are defined at their true geometry and location as much as possible-approximately 2.94 million vector flowlines (median length 6.8 km) and unit catchments are derived from a high-accuracy global digital elevation model at 3-arcsec resolution (~90 m), which serves as the underlying hydrography for river routing. Our 35-year daily and monthly model simulations are evaluated against over 14,000 gauges globally. Among them, 35% (64%) have a percentage bias within ±20% (±50%), and 29% (62%) have a monthly Kling-Gupta Efficiency ≥0.6 (0.2), showing data robustness at the scale the model is assessed. This reconstructed discharge record can be used as a priori information for the Surface Water and Ocean Topography satellite mission's discharge product, thus named "Global Reach-level A priori Discharge Estimates for Surface Water and Ocean Topography". It can also be used in other hydrologic applications requiring spatially explicit estimates of global river flows.

9.
Science ; 361(6402): 585-588, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29954985

RESUMO

The turbulent surfaces of rivers and streams are natural hotspots of biogeochemical exchange with the atmosphere. At the global scale, the total river-atmosphere flux of trace gasses such as carbon dioxide depends on the proportion of Earth's surface that is covered by the fluvial network, yet the total surface area of rivers and streams is poorly constrained. We used a global database of planform river hydromorphology and a statistical approach to show that global river and stream surface area at mean annual discharge is 773,000 ± 79,000 square kilometers (0.58 ± 0.06%) of Earth's nonglaciated land surface, an area 44 ± 15% larger than previous spatial estimates. We found that rivers and streams likely play a greater role in controlling land-atmosphere fluxes than is currently represented in global carbon budgets.

10.
Nat Commun ; 9(1): 610, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426914

RESUMO

The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater, and the atmosphere. In large river systems, the relationship between river width and abundance is fractal, such that narrow rivers are proportionally more common than wider rivers. However, in headwater systems, where many biogeochemical reactions are most rapid, the relationship between stream width and abundance is unknown. To constrain this uncertainty, we surveyed stream hydromorphology (wetted width and length) in several headwater stream networks across North America and New Zealand. Here, we find a strikingly consistent lognormal statistical distribution of stream width, including a characteristic most abundant stream width of 32 ± 7 cm independent of discharge or physiographic conditions. We propose a hydromorphic model that can be used to more accurately estimate the hydromorphology of streams, with significant impact on the understanding of the hydraulic, ecological, and biogeochemical functions of stream networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA