Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 798: 149241, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333429

RESUMO

The postglacial Patagonian fjord system along the west coast of southern South America is one of the largest stretches of the southern hemisphere (SH) fjord belt, influenced by the SH westerly wind belt and continental freshwater input. This study reports a 3-year monthly time series (2017-2020) of physical and biogeochemical parameters obtained from the Reloncaví Marine Observatory (OMARE, Spanish acronym) at the northernmost embayment and fjord system of Patagonia. The main objective of this work was to understand the land-atmosphere-ocean interactions and to identify the mechanisms that modulate the density of phytoplankton. A key finding of this study was the seasonally varying asynchronous input of oceanic and estuarine water. Surface lower salinity and warmer estuarine water arrived in late winter to summer, contributing to water column stability, followed by subsurface higher salinity and less warmer oceanic water during fall-winter. In late winter 2019, an interannual change above the picnocline due to the record-high polarity of the Indian Ocean Dipole inhibited water column stability. The biogeochemical parameters (NO3-, NO2-, PO43-, Si(OH)4, pH, and dissolved oxygen) responded to the surface annual salinity variations, and oceanic water mass contributed greatly to the subsurface inorganic nutrient input. The water column N/P ratio indicated that no eutrophication occurred, even under intense aquaculture activity, likely because of the high ventilation dynamics of the Reloncaví Sound. Finally, a shift in phytoplankton composition, characterized by surface chlorophyll-a maxima in late winter and deepening of spring-summer blooms related to the physicochemical conditions of the water column, was observed. Our results support the ecosystem services provided by local oceanography processes in the north Patagonian fjords. Here, the anthropogenic impact caused by economic activities could be, in part, chemically reduced by the annual ventilation cycle mediated by the exchange of oceanic water masses into Patagonian fjords.


Assuntos
Ecossistema , Estuários , Monitoramento Ambiental , Oceano Índico , Oceanografia , Fitoplâncton , Água do Mar
2.
Chemosphere ; 246: 125709, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31901660

RESUMO

Plastic is an allochthonous material to marine ecosystems but is rapidly colonized by marine microbial communities, with an as yet unclear contribution to biogeochemical cycles. In this study, we investigated the influence of an active microbial community grown on microplastic particles (the plastisphere) on CO2 and N2O recycling and its potential role in greenhouse gas inventories and air-sea exchange. Microplastics were collected during two cruises (Cimar 21 and FIP Montes Submarinos) from the surface layer (5 m depth) from several contrasting trophic regions of the South Pacific Ocean, i.e., from a transition zone off the eutrophic coastal upwelling of Chile, to a mesotrophic transition area of oceanic seamounts and, finally, to an oligotrophic zone in the South Pacific Subtropical Gyre. . Experiments were carried out onboard to evaluate CO2 and N2O production/consumption by the plastisphere. The active microbial community and its specific quantification were determined for Cimar 21 using iTag 16 S rRNA. The experiments showed that the plastisphere generally contributed to CO2 and N2O production/consumption, with rates ranging from -20.5 (consumption) to +4.5 (production) µmol/m2/d. The seamounts and the transition zone presented the highest production/consumption rates. The experiments performed in the two seamount stations showed that production and consumption of CO2 were related to the environmental nutrient concentration. Both stations presented N2O consumption that was associated with the high nitrogen deficit of the subantarctic water mass. The transition zone presented CO2 and N2O production in a plastisphere dominated by heterotrophic communities. The plastisphere in oligotrophic waters was diverse and active. The experiments, however, presented low or no production of greenhouse gases. Our results show a contribution of CO2 and N2O to the global gas surface inventories and air-sea exchange is lower than 1% of the global sources. These results highlight different critical impacts of plastic pollution on the environment that have, until now, not been considered.


Assuntos
Poluição Ambiental/estatística & dados numéricos , Gases de Efeito Estufa/análise , Plásticos/análise , Dióxido de Carbono , Chile , Microbiota , Óxido Nitroso , Oceanos e Mares , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA