Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38559204

RESUMO

Competition over access to resources, such as food and mates, is believed to be one of the major costs associated with group living. Two socioecological factors suggested to predict the intensity of competition are group size and the relative abundance of sexually active individuals. However, empirical evidence linking these factors to injuries and survival costs is scarce. Here, we leveraged 10 years of data from free-ranging rhesus macaques where injuries inflicted by conspecifics are associated with a high mortality risk. We tested if group size and adult sex ratio predicted the occurrence of injuries and used data on physical aggression to contextualise these results. We found that males were less likely to be injured when living in larger groups, potentially due to advantages in intergroup encounters. Females, instead, had higher injury risk when living in larger groups but this was not explained by within-group aggression among females. Further, male-biased sex ratios predicted a weak increase in injury risk in females and were positively related to male-female aggression, indicating that male coercion during mating competition may be a cause of injuries in females. Overall, our results provide insights into sex differences in the fitness-related costs of competition and empirical evidence for long-standing predictions on the evolution of group living.

2.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559098

RESUMO

The benefits of social living are well established, but sociality also comes with costs, including infectious disease risk. This cost-benefit ratio of sociality is expected to change across individuals' lifespans, which may drive changes in social behaviour with age. To explore this idea, we combine data from a group-living primate for which social ageing has been described with epidemiological models to show that having lower social connectedness when older can protect against the costs of a hypothetical, directly transmitted endemic pathogen. Assuming no age differences in epidemiological characteristics (susceptibility to, severity, and duration of infection), older individuals suffered lower infection costs, which was explained largely because they were less connected in their social networks than younger individuals. This benefit of 'social ageing' depended on epidemiological characteristics and was greatest when infection severity increased with age. When infection duration increased with age, social ageing was beneficial only when pathogen transmissibility was low. Older individuals benefited most from having a lower frequency of interactions (strength) and network embeddedness (closeness) and benefited less from having fewer social partners (degree). Our study provides a first examination of the epidemiology of social ageing, demonstrating the potential for pathogens to influence evolutionary dynamics of social ageing in natural populations.

3.
Geroscience ; 46(2): 2107-2122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37853187

RESUMO

Increasing age is associated with dysregulated immune function and increased inflammation-patterns that are also observed in individuals exposed to chronic social adversity. Yet we still know little about how social adversity impacts the immune system and how it might promote age-related diseases. Here, we investigated how immune cell diversity varied with age, sex and social adversity (operationalized as low social status) in free-ranging rhesus macaques. We found age-related signatures of immunosenescence, including lower proportions of CD20 + B cells, CD20 + /CD3 + ratio, and CD4 + /CD8 + T cell ratio - all signs of diminished antibody production. Age was associated with higher proportions of CD3 + /CD8 + Cytotoxic T cells, CD16 + /CD3- Natural Killer cells, CD3 + /CD4 + /CD25 + and CD3 + /CD8 + /CD25 + T cells, and CD14 + /CD16 + /HLA-DR + intermediate monocytes, and lower levels of CD14 + /CD16-/HLA-DR + classical monocytes, indicating greater amounts of inflammation and immune dysregulation. We also found a sex-dependent effect of exposure to social adversity (i.e., low social status). High-status males, relative to females, had higher CD20 + /CD3 + ratios and CD16 + /CD3 Natural Killer cell proportions, and lower proportions of CD8 + Cytotoxic T cells. Further, low-status females had higher proportions of cytotoxic T cells than high-status females, while the opposite was observed in males. High-status males had higher CD20 + /CD3 + ratios than low-status males. Together, our study identifies the strong age and sex-dependent effects of social adversity on immune cell proportions in a human-relevant primate model. Thus, these results provide novel insights into the combined effects of demography and social adversity on immunity and their potential contribution to age-related diseases in humans and other animals.


Assuntos
Antígenos HLA-DR , Alienação Social , Masculino , Feminino , Animais , Humanos , Macaca mulatta , Linfócitos T CD8-Positivos , Inflamação
4.
Neurosci Biobehav Rev ; 154: 105424, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827475

RESUMO

Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques (Macaca mulatta). We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.


Assuntos
Envelhecimento , Comportamento Social , Animais , Macaca mulatta/fisiologia , Biologia
5.
bioRxiv ; 2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36747827

RESUMO

Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago Island, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques. We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.

6.
iScience ; 25(11): 105454, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36405777

RESUMO

Sociality has been linked to a longer lifespan in many mammals, including humans. Yet, how sociality results in survival benefits remains unclear. Using 10 years of data and over 1,000 recorded injuries in rhesus macaques (Macaca mulatta), we tested two injury-related mechanisms by which social status and affiliative partners might influence survival. Injuries increased individual risk of death by 3-fold in this dataset. We found that sociality can affect individuals' survival by reducing their risk of injury but had no effect on the probability of injured individuals dying. Both males and females of high social status (measured as female matrilineal rank and male group tenure) and females with more affiliative partners (estimated using the number of female relatives) experienced fewer injuries and thus were less likely to die. Collectively, our results offer rare insights into one mechanism that can mediate the well-known benefits of sociality on an individual's fitness.

7.
Physiol Behav ; 241: 113560, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454245

RESUMO

Social integration and social status can substantially affect an individual's health and survival. One route through which this occurs is by altering immune function, which can be highly sensitive to changes in the social environment. However, we currently have limited understanding of how sociality influences markers of immunity in naturalistic populations where social dynamics can be fully realized. To address this gap, we asked if social integration and social status in free-ranging rhesus macaques (Macaca mulatta) predict anatomical and physiological markers of immunity. We used data on agonistic interactions to determine social status, and social network analysis of grooming interactions to generate measures of individual variation in social integration. As measures of immunity, we included the size of two of the major organs involved in the immune response, the spleen and liver, and counts of three types of blood cells (red blood cells, platelets, and white blood cells). Controlling for body mass and age, we found that neither social status nor social integration predicted the size of anatomical markers of immunity. However, individuals that were more socially connected, i.e., with more grooming partners, had lower numbers of white blood cells than their socially isolated counterparts, indicating lower levels of inflammation with increasing levels of integration. These results build upon and extend our knowledge of the relationship between sociality and the immune system in humans and captive animals to free-ranging primates, demonstrating generalizability of the beneficial role of social integration on health.


Assuntos
Comportamento Social , Meio Social , Animais , Asseio Animal , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA