Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Med Virol ; 95(6): e28840, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37254846

RESUMO

Chandipura virus (CHPV) is an emerging encephalitic virus with outbreak potential in a pediatric population. It causes acute encephalitis, with clinical symptoms leading to death within 48-72 h and an alarmingly high case fatality rate up to 55%-78%. Despite the high mortality rate in children, no vaccines or antivirals are currently available; thus, repurposing licensed drugs seems to be one of the attractive therapeutic approaches. Among the various options available, Favipiravir emerged as a promising candidate, and its unique characteristics and clinical efficacy have garnered significant attention and demonstrated considerable potential in the fight against viral diseases. In the current study, we have evaluated the antiviral effect of Favipiravir against CHPV by Plaque reduction assay and viral growth kinetics assay in Vero cells and in vivo effect of drug treatment against lethal viral challenge was analysed in 10-day-old CD1 mice. A dose-dependent reduction in CHPV plaque size and number was observed in Vero cells treated with Favipiravir, with an EC50 of 92.26 µM. Complete inhibition of CHPV replication was observed at 320 µM drug concentration and 50% cytotoxicity (CC50 ) at 4774 µM, indicating a high selectivity index 51.24. In vivo, studies in mice showed 100% survival with 300 mg/kg/day of Favipiravir given orally till seventh-day postinfection. The study provides evidence of the antiviral activity of Favipiravir against CHPV infection, and further clinical evaluation may alleviate the associated mortality.


Assuntos
Antivirais , Vesiculovirus , Chlorocebus aethiops , Criança , Humanos , Animais , Camundongos , Células Vero , Antivirais/farmacologia , Antivirais/uso terapêutico , Vesiculovirus/fisiologia , Replicação Viral
2.
J Clin Virol ; 153: 105194, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35687988

RESUMO

BACKGROUND: We enhanced surveillance of hospitalizations of all ages for acute encephalitis syndrome (AES) along with infectious aetiologies, including the Japanese encephalitis virus (JEV). METHODS: From October 2018 to September 2020, we screened neurological patients for AES in all age groups in Maharashtra and Telangana States. AES cases were enrolled at study hospitals along with other referrals and sampled with cerebrospinal fluid, acute and convalescent sera. We tested specimens for non-viral aetiologies viz. leptospirosis, typhoid, scrub typhus, malaria and acute bacterial meningitis, along with viruses - JEV, Dengue virus (DENV), Chikungunya virus (CHIKV), Chandipura virus (CHPV) and Herpes simplex virus (HSV). RESULTS: Among 4977 neurological hospitalizations at three study site hospitals over two years period, 857 (17.2%) were AES. However, only 287 (33.5%) AES cases were eligible. Among 278 (96.9%) enrolled AES cases, infectious aetiologies were identified in 115 (41.4%) cases, including non-viral in 17 (6.1%) cases - leptospirosis (8), scrub-typhus (3) and typhoid (6); and viral in 98 (35.3%) cases - JEV (58, 20.9%), HSV (22, 7.9%), DENV (15, 5.4%) and CHPV (3, 1.1%). JEV confirmation was significantly higher in enrolled cases than referred cases (10.2%) (p < 0.05). However, the contribution of JEV in AES cases was similar in both children and adults. JE was reported year-round and from adjacent non-endemic districts. CONCLUSIONS: The Japanese encephalitis virus continues to be the leading cause of acute encephalitis syndrome in central India despite vaccination among children. Surveillance needs to be strengthened along with advanced diagnostic testing for assessing the impact of vaccination.


Assuntos
Encefalopatia Aguda Febril , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Leptospirose , Febre Tifoide , Encefalopatia Aguda Febril/epidemiologia , Encefalopatia Aguda Febril/etiologia , Adulto , Criança , Encefalite Japonesa/diagnóstico , Encefalite Japonesa/epidemiologia , Hospitalização , Humanos , Índia/epidemiologia , Simplexvirus
3.
J Biomol Struct Dyn ; 40(2): 648-659, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32897148

RESUMO

Chandipura virus (CHPV) is an emerging pathogen responsible for acute encephalitic syndrome (AES) in pediatric population in India. Several outbreaks of CHPV have been reported from different states of India since the year 2003. At present there is no vaccine or therapeutic measures available to curtail the disease. In this study, we have identified both T-cell and B-cell epitopes of different antigenic proteins of CHPV like Nucleoprotein (N), Phosphoprotein (P) and Matrix protein (M) along with the immuno-dominant glycoprotein (G) and conducted in silico characterization for the same. The idea is to design a multi-epitope peptide construct using the epitopes, which were found to be non-toxic, non-allergenic and possessing high immunogenicity. The final multi-epitope construct named as: MEC-CHPV, comprised of ß-defensin adjuvant at N-terminal for enhancement of immunogenicity followed by fourteen B-cell epitopes, four Helper T-cell epitopes and six Cytotoxic T-cell epitopes. The characterization of designed construct was carried out in terms of physicochemical parameters, antigenicity and allergenicity. The 3D structure prediction was performed. Molecular docking and molecular-dynamics simulation of MEC-CHPV with Toll like receptors (TLR-3 and TLR-8) showed stable interactions. In silico cloning of MEC-CHPV in pET30a(+) expression vector was also conducted using codon optimization. The in silico immune-simulation indicated a typical immune response against MEC-CHPV when used as a potential vaccine. This study provides a cost-effective and time-saving way to design a peptide vaccine candidate against CHPV using immuno-informatics approach. Development of the MEC-CHPV construct may pave the way for future laboratory experiments.Communicated by Ramaswamy H. Sarma.


Assuntos
Epitopos de Linfócito B , Vesiculovirus , Criança , Biologia Computacional , Epitopos de Linfócito T , Humanos , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas
4.
Arch Virol ; 166(11): 3143-3150, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34533641

RESUMO

Chandipura virus (CHPV), belonging to the genus Vesiculovirus of the family Rhabdoviridae, has been identified as one of the causes of pediatric encephalitis in India. Currently, neither vaccines nor therapeutic drugs are available against this agent. Considering that the disease progresses very fast with a high mortality rate, working towards the development of potential therapeutics against it will have a public health impact. Although the use of viral inhibitors as antiviral agents is the most common way to curb virus replication, the mutation-prone nature of viruses results in the development of resistance to antiviral agents. The recent development of proteomic platforms for analysis of purified viral agents has allowed certain upregulated host proteins that are involved in the morphogenesis and replication of viruses to be identified. Thus, the alternative approach of inhibition of host proteins involved in the regulation of virus replication could be explored for their therapeutic effectiveness. In the current study, we have evaluated the effect of inhibition of cyclophilin A (CypA), an immunophilin with peptidyl-prolyl cis/trans-isomerase activity, on the replication of CHPV. Treatment with cyclosporin A, used in vitro for the inhibition of CypA, resulted in a 3-log reduction in CHPV titer and an undetectable level of CypA in comparison to an untreated control. An in silico analysis of the interaction of the CHPV nucleoprotein with the human CypA protein showed stable interaction in molecular docking and molecular dynamics simulations. Overall, the results of this study suggest a possible role of CypA in facilitating CHPV replication, thus making it one of the potential host factors to be explored in future antiviral studies.


Assuntos
Ciclofilina A/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Infecções por Rhabdoviridae/virologia , Vesiculovirus/patogenicidade , Ciclofilina A/antagonistas & inibidores , Ciclofilina A/química , Ciclosporina/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Vesiculovirus/efeitos dos fármacos , Vesiculovirus/fisiologia , Replicação Viral/efeitos dos fármacos
5.
Arch Virol ; 163(12): 3215-3223, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30116984

RESUMO

Chandipura virus (CHPV), associated with an encephalitic illness in humans, has caused multiple outbreaks with high mortality in central and western India in recent years. The present study compares surface glycoprotein (G-protein) from prototype and recent outbreak strains using in silico tools and in vitro experiments. In silico epitope predictions (B-cell and T-helper cell) for the sequences, 3D structure prediction and comparison of the G-proteins of the strains: I653514 (Year 1965), CIN0327 (Year 2003) and 148974 (Year 2014) revealed that the CHPV G-protein is stable and antigenic determinants are conserved. A monoclonal antibody developed against strain CIN0327 (named NAbC) was found to neutralize prototype I653514 as well as the currently circulating strain 148974. In silico antigen-antibody interaction studies using molecular docking of predicted structures of NAbC and G-proteins of various CHPV strains led to the identification of a conserved neutralizing epitope in the fusion domain of G-protein, which also contained a putative T-helper peptide. The identification of a conserved neutralizing epitope in domain IV (fusion domain amino acids 53 to 172) of CHPV G-protein is an important finding that may have the scope towards the development of protective targets against CHPV infection.


Assuntos
Glicoproteínas/química , Glicoproteínas/imunologia , Infecções por Rhabdoviridae/virologia , Vesiculovirus/imunologia , Proteínas Virais/química , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Sequência Conservada , Mapeamento de Epitopos , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Glicoproteínas/genética , Índia/epidemiologia , Simulação de Acoplamento Molecular , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/veterinária , Vesiculovirus/química , Vesiculovirus/genética , Proteínas Virais/genética
6.
J Virol Methods ; 226: 31-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26388421

RESUMO

Our previous studies on West Nile virus (WNV) strains isolated from human patients in India suggested substantial variation at the genetic level reflecting their variable pathogenesis. This study describes the development of reverse genetics system for a neurovirulent WNV isolate 68856 and its characterization. Full length viral cDNA was cloned into bacterial artificial chromosome (BAC) under the transcription control of T7 promoter. The RNA transcripts obtained by in vitro transcription were infectious in mammalian cells upon transfection. Cytopathic effect caused by synthetic RNA transcripts in mammalian cells, detection of cell associated viral protein after transfection and recovery of genetic markers in the progeny virus genome marked the successful development of reverse genetics system for WNV. Replication potential and plaque morphology of newly expressed virus along with its antigenic cross reactivity with the parental virus suggests synthesis of biologically identical replicative virus. Comparative neuropathogenesis studies in murine model indicated that the three genetic changes occurred in the recombinant virus during in vitro transcription has no impact on viral pathogenesis. The stable infectious cDNA clone generated from the neurovirulent Indian WNV strain will serve as a valuable experimental tool to study the viral factors contributing towards pathogenesis, host-virus interaction and immune evasion.


Assuntos
Clonagem Molecular/métodos , Genética Reversa/métodos , Vírus do Nilo Ocidental/genética , Animais , Cromossomos Artificiais Bacterianos , DNA Complementar , Humanos , Índia , Camundongos , Modelos Animais , Vírus do Nilo Ocidental/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA