Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Bull World Health Organ ; 101(11): 707-716, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961054

RESUMO

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, numerous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged, some leading to large increases in infections, hospitalizations and deaths globally. The virus's impact on public health depends on many factors, including the emergence of new viral variants and their global spread. Consequently, the early detection and surveillance of variants and characterization of their clinical effects are vital for assessing their health risk. The unprecedented capacity for viral genomic sequencing and data sharing built globally during the pandemic has enabled new variants to be rapidly detected and assessed. This article describes the main variants circulating globally between January 2020 and June 2023, the genetic features driving variant evolution, and the epidemiological impact of these variants across countries and regions. Second, we report how integrating genetic variant surveillance with epidemiological data and event-based surveillance, through a network of World Health Organization partners, supported risk assessment and helped provide guidance on pandemic responses. In addition, given the evolutionary characteristics of circulating variants and the immune status of populations, we propose future directions for the sustainable genomic surveillance of SARS-CoV-2 variants, both nationally and internationally: (i) optimizing variant surveillance by including environmental monitoring; (ii) coordinating laboratory assessment of variant evolution and phenotype; (iii) linking data on circulating variants with clinical data; and (iv) expanding genomic surveillance to additional pathogens. Experience during the COVID-19 pandemic has shown that genomic surveillance of pathogens can provide essential, timely and evidence-based information for public health decision-making.


Depuis le début de la pandémie de coronavirus survenue en 2019 (COVID-19), de nombreux variants du coronavirus 2 du syndrome respiratoire aigu sévère (SARS-CoV-2) sont apparus, certains entraînant une forte augmentation du nombre d'infections, d'hospitalisations et de décès dans le monde. L'impact du virus sur la santé publique dépend de nombreux facteurs, notamment l'émergence de nouveaux variants viraux et leur propagation à l'échelle mondiale. Par conséquent, la détection précoce et la surveillance des variants ainsi que la caractérisation de leurs effets cliniques sont essentielles pour évaluer leur risque pour la santé. La capacité sans précédent de séquençage du génome viral et de partage des données, capacité mise en place à l'échelle mondiale pendant la pandémie, a permis de détecter et d'évaluer rapidement de nouveaux variants. Le présent article décrit les principaux variants circulant dans le monde entre janvier 2020 et juin 2023, les caractéristiques génétiques à l'origine de leur évolution et leur impact épidémiologique dans les différents pays et régions. Ensuite, nous expliquerons comment l'intégration de la surveillance des variants génétiques aux données épidémiologiques et à la surveillance fondée sur les événements, par l'intermédiaire d'un réseau de partenaires de l'Organisation mondiale de la santé, a permis de faciliter l'évaluation des risques et de fournir des orientations sur les mesures à prendre en période de pandémie. En outre, compte tenu des caractéristiques évolutives des variants en circulation et de l'état immunitaire des populations, nous proposons des orientations futures pour une surveillance génomique durable des variants du SARS-CoV-2, au niveau tant national qu'international: (i) optimiser la surveillance des variants en incluant le suivi environnemental; (ii) coordonner l'évaluation en laboratoire de l'évolution des variants et du phénotype; (iii) établir un lien entre les données sur les variants en circulation et les données cliniques; et (iv) étendre la surveillance génomique à d'autres agents pathogènes. L'expérience de la pandémie de COVID-19 a mis en évidence que la surveillance génomique des agents pathogènes peut fournir en temps utile des informations essentielles fondées sur des preuves en vue de la prise de décisions en matière de santé publique.


Desde el inicio de la pandemia de la enfermedad por coronavirus de 2019 (COVID-19), han aparecido numerosas variantes del coronavirus de tipo 2 causante del síndrome respiratorio agudo severo (SRAS-CoV-2), algunas de las que han provocado un gran aumento de las infecciones, hospitalizaciones y muertes en todo el mundo. El impacto del virus en la salud pública depende de muchos factores, entre ellos la aparición de nuevas variantes víricas y su propagación mundial. En consecuencia, la detección y vigilancia tempranas de las variantes y la caracterización de sus efectos clínicos son vitales para evaluar su riesgo sanitario. La capacidad sin precedentes de secuenciación genómica viral y de intercambio de datos creada a nivel mundial durante la pandemia ha permitido detectar y evaluar rápidamente variantes nuevas. En este artículo se describen las principales variantes que circulan a nivel mundial entre enero de 2020 y junio de 2023, la característica genética que impulsa la evolución de las variantes y el impacto epidemiológico de estas variantes en los diferentes países y regiones. En segundo lugar, se informa de cómo la integración de la vigilancia de variantes genéticas con los datos epidemiológicos y la vigilancia basada en eventos, a través de una red de asociados de la Organización Mundial de la Salud, apoyó la evaluación de riesgos y ayudó a proporcionar orientación sobre las respuestas a la pandemia. Además, dadas las características evolutivas de las variantes circulantes y el estado inmunitario de las poblaciones, se proponen orientaciones futuras para la vigilancia genómica sostenible de las variantes del SRAS-CoV-2, tanto a nivel nacional como internacional: (i) optimizar la vigilancia de las variantes mediante la inclusión de la monitorización ambiental; (ii) coordinar la evaluación de laboratorio de la evolución y el fenotipo de las variantes; (iii) vincular los datos sobre las variantes circulantes con los datos clínicos; y (iv) ampliar la vigilancia genómica a patógenos adicionales. La experiencia durante la pandemia de la COVID-19 ha demostrado que la vigilancia genómica de patógenos puede proporcionar información esencial, oportuna y basada en evidencias para la toma de decisiones en materia de salud pública.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Medição de Risco
2.
Emerg Infect Dis ; 29(10): 2125-2129, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37647121

RESUMO

The 2022-2023 mpox outbreak predominantly affected adult men; 1.3% of reported cases were in children and adolescents <18 years of age. Analysis of global surveillance data showed 1 hospital intensive care unit admission and 0 deaths in that age group. Transmission routes and clinical manifestations varied across age subgroups.


Assuntos
Mpox , Adolescente , Criança , Humanos , Surtos de Doenças , Hospitalização , Unidades de Terapia Intensiva
3.
BMJ Glob Health ; 8(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37495371

RESUMO

BACKGROUND: Globally, since 1 January 2020 and as of 24 January 2023, there have been over 664 million cases of COVID-19 and over 6.7 million deaths reported to WHO. WHO developed an evidence-based alert system, assessing public health risk on a weekly basis in 237 countries, territories and areas from May 2021 to June 2022. This aimed to facilitate the early identification of situations where healthcare capacity may become overstretched. METHODS: The process involved a three-stage mixed methods approach. In the first stage, future deaths were predicted from the time series of reported cases and deaths to produce an initial alert level. In the second stage, this alert level was adjusted by incorporating a range of contextual indicators and accounting for the quality of information available using a Bayes classifier. In the third stage, countries with an alert level of 'High' or above were added to an operational watchlist and assistance was deployed as needed. RESULTS: Since June 2021, the system has supported the release of more than US$27 million from WHO emergency funding, over 450 000 rapid antigen diagnostic testing kits and over 6000 oxygen concentrators. Retrospective evaluation indicated that the first two stages were needed to maximise sensitivity, where 44% (IQR 29%-67%) of weekly watchlist alerts would not have been identified using only reported cases and deaths. The alerts were timely and valid in most cases; however, this could only be assessed on a non-representative sample of countries with hospitalisation data available. CONCLUSIONS: The system provided a standardised approach to monitor the pandemic at the country level by incorporating all available data on epidemiological analytics and contextual assessments. While this system was developed for COVID-19, a similar system could be used for future outbreaks and emergencies, with necessary adjustments to parameters and indicators.


Assuntos
COVID-19 , Saúde Pública , Humanos , Teorema de Bayes , Surtos de Doenças , Estudos Retrospectivos , Organização Mundial da Saúde
4.
Lancet Glob Health ; 11(7): e1012-e1023, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349031

RESUMO

BACKGROUND: In May 2022, several countries with no history of sustained community transmission of mpox (formerly known as monkeypox) notified WHO of new mpox cases. These cases were soon followed by a large-scale outbreak, which unfolded across the world, driven by local, in-country transmission within previously unaffected countries. On July 23, 2022, WHO declared the outbreak a Public Health Emergency of International Concern. Here, we aim to describe the main epidemiological features of this outbreak, the largest reported to date. METHODS: In this analysis of global surveillance data we analysed data for all confirmed mpox cases reported by WHO Member States through the global surveillance system from Jan 1, 2022, to Jan 29, 2023. Data included daily aggregated numbers of mpox cases by country and a case reporting form (CRF) containing information on demographics, clinical presentation, epidemiological exposure factors, and laboratory testing. We used the data to (1) describe the key epidemiological and clinical features of cases; (2) analyse risk factors for hospitalisation (by multivariable mixed-effects binary logistic regression); and (3) retrospectively analyse transmission trends. Sequencing data from GISAID and GenBank were used to analyse monkeypox virus (MPXV) genetic diversity. FINDINGS: Data from 82 807 cases with submitted CRFs were included in the analysis. Cases were primarily due to clade IIb MPXV (mainly lineage B.1, followed by lineage A.2). The outbreak was driven by transmission among males (73 560 [96·4%] of 76 293 cases) who self-identify as men who have sex with men (25 938 [86·9%] of 29 854 cases). The most common reported route of transmission was sexual contact (14 941 [68·7%] of 21 749). 3927 (7·3%) of 54 117 cases were hospitalised, with increased odds for those aged younger than 5 years (adjusted odds ratio 2·12 [95% CI 1·32-3·40], p=0·0020), aged 65 years and older (1·54 [1·05-2·25], p=0·026), female cases (1·61 [1·35-1·91], p<0·0001), and for cases who are immunosuppressed either due to being HIV positive and immunosuppressed (2·00 [1·68-2·37], p<0·0001), or other immunocompromising conditions (3·47 [1·84-6·54], p=0·0001). INTERPRETATION: Continued global surveillance allowed WHO to monitor the epidemic, identify risk factors, and inform the public health response. The outbreak can be attributed to clade IIb MPXV spread by newly described modes of transmission. FUNDING: WHO Contingency Fund for Emergencies. TRANSLATIONS: For the French and Spanish translations of the abstract see Supplementary Materials section.


Assuntos
Mpox , Minorias Sexuais e de Gênero , Masculino , Feminino , Humanos , Homossexualidade Masculina , Estudos Retrospectivos , Surtos de Doenças
6.
MMWR Morb Mortal Wkly Rep ; 72(5): 113-118, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36730046

RESUMO

After the emergence of SARS-CoV-2 in late 2019, transmission expanded globally, and on January 30, 2020, COVID-19 was declared a public health emergency of international concern.* Analysis of the early Wuhan, China outbreak (1), subsequently confirmed by multiple other studies (2,3), found that 80% of deaths occurred among persons aged ≥60 years. In anticipation of the time needed for the global vaccine supply to meet all needs, the World Health Organization (WHO) published the Strategic Advisory Group of Experts on Immunization (SAGE) Values Framework and a roadmap for prioritizing use of COVID-19 vaccines in late 2020 (4,5), followed by a strategy brief to outline urgent actions in October 2021.† WHO described the general principles, objectives, and priorities needed to support country planning of vaccine rollout to minimize severe disease and death. A July 2022 update to the strategy brief§ prioritized vaccination of populations at increased risk, including older adults,¶ with the goal of 100% coverage with a complete COVID-19 vaccination series** for at-risk populations. Using available public data on COVID-19 mortality (reported deaths and model estimates) for 2020 and 2021 and the most recent reported COVID-19 vaccination coverage data from WHO, investigators performed descriptive analyses to examine age-specific mortality and global vaccination rollout among older adults (as defined by each country), stratified by country World Bank income status. Data quality and COVID-19 death reporting frequency varied by data source; however, persons aged ≥60 years accounted for >80% of the overall COVID-19 mortality across all income groups, with upper- and lower-middle-income countries accounting for 80% of the overall estimated excess mortality. Effective COVID-19 vaccines were authorized for use in December 2020, with global supply scaled up sufficiently to meet country needs by late 2021 (6). COVID-19 vaccines are safe and highly effective in reducing severe COVID-19, hospitalizations, and mortality (7,8); nevertheless, country-reported median completed primary series coverage among adults aged ≥60 years only reached 76% by the end of 2022, substantially below the WHO goal, especially in middle- and low-income countries. Increased efforts are needed to increase primary series and booster dose coverage among all older adults as recommended by WHO and national health authorities.


Assuntos
COVID-19 , Vacinas , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Vacinação , Organização Mundial da Saúde
8.
Euro Surveill ; 27(49)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36695442

RESUMO

The coronavirus disease (COVID-19) presented a unique opportunity for the World Health Organization (WHO) to utilise public health intelligence (PHI) for pandemic response. WHO systematically captured mainly unstructured information (e.g. media articles, listservs, community-based reporting) for public health intelligence purposes. WHO used the Epidemic Intelligence from Open Sources (EIOS) system as one of the information sources for PHI. The processes and scope for PHI were adapted as the pandemic evolved and tailored to regional response needs. During the early months of the pandemic, media monitoring complemented official case and death reporting through the International Health Regulations mechanism and triggered alerts. As the pandemic evolved, PHI activities prioritised identifying epidemiological trends to supplement the information available through indicator-based surveillance reported to WHO. The PHI scope evolved over time to include vaccine introduction, emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, unusual clinical manifestations and upsurges in cases, hospitalisation and death incidences at subnational levels. Triaging the unprecedented high volume of information challenged surveillance activities but was managed by collaborative information sharing. The evolution of PHI activities using multiple sources in WHO's response to the COVID-19 pandemic illustrates the future directions in which PHI methodologies could be developed and used.


Assuntos
COVID-19 , Saúde Pública , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias/prevenção & controle , Organização Mundial da Saúde , Inteligência
9.
Lancet Healthy Longev ; 2(7): e436-e443, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240065

RESUMO

The 2030 Sustainable Development Goals agenda calls for health data to be disaggregated by age. However, age groupings used to record and report health data vary greatly, hindering the harmonisation, comparability, and usefulness of these data, within and across countries. This variability has become especially evident during the COVID-19 pandemic, when there was an urgent need for rapid cross-country analyses of epidemiological patterns by age to direct public health action, but such analyses were limited by the lack of standard age categories. In this Personal View, we propose a recommended set of age groupings to address this issue. These groupings are informed by age-specific patterns of morbidity, mortality, and health risks, and by opportunities for prevention and disease intervention. We recommend age groupings of 5 years for all health data, except for those younger than 5 years, during which time there are rapid biological and physiological changes that justify a finer disaggregation. Although the focus of this Personal View is on the standardisation of the analysis and display of age groups, we also outline the challenges faced in collecting data on exact age, especially for health facilities and surveillance data. The proposed age disaggregation should facilitate targeted, age-specific policies and actions for health care and disease management.


Assuntos
COVID-19 , Pandemias , Pré-Escolar , Humanos , Morbidade , Desenvolvimento Sustentável
11.
Int J Infect Dis ; 97: 167-173, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32450292

RESUMO

BACKGROUND: Between December 2013 and June 2016, West Africa experienced the largest Ebola virus disease (EVD) outbreak in history. Understanding EVD in pregnancy is important for EVD clinical screening and infection prevention and control. METHODS: We conducted a review of medical records and EVD investigation reports from three districts in Sierra Leone. We report the clinical presentations and maternal and fetal outcomes of six pregnant women with atypical EVD, and subsequent transmission events from perinatal care. RESULTS: The six women (ages 18-38) were all in the third trimester. Each presented with signs and symptoms initially attributed to pregnancy. None met EVD case definition; only one was known at presentation to be a contact of an EVD case. Five women died, and all six fetuses/neonates died. These cases resulted in at least 35 additional EVD cases. CONCLUSIONS: These cases add to the sparse literature focusing on pregnant women with EVD, highlighting challenges and implications for outbreak control. Infected newborns may also present atypically and may shed virus while apparently asymptomatic. Pregnant women identified a priori as contacts of EVD cases require special attention and planning for obstetrical care.


Assuntos
Doença pelo Vírus Ebola/diagnóstico , Complicações Infecciosas na Gravidez/diagnóstico , Adolescente , Adulto , Surtos de Doenças , Feminino , Doença pelo Vírus Ebola/epidemiologia , Humanos , Recém-Nascido , Gravidez , Complicações Infecciosas na Gravidez/virologia , Saúde Pública , Serra Leoa/epidemiologia , Adulto Jovem
12.
Artigo em Inglês | MEDLINE | ID: mdl-26306216

RESUMO

OBJECTIVE: To assess the public health risk posed by the ongoing Ebola virus disease (EVD) epidemic in West Africa to Pacific island countries and areas and to highlight priority risk management actions for preparedness and response. METHOD: The likelihood of EVD importation and the magnitude of public health impact in Pacific island countries and areas were assessed to determine overall risk. Literature about the hazard, epidemiology, exposure and contextual factors associated with EVD was collected and reviewed. Epidemiological information from the current EVD outbreak was assessed. RESULTS: As of 11 March 2015, there have been more than 24,200 reported cases of EVD and at least 9976 deaths in six West African countries. Three EVD cases have been infected outside of the West African region, and all have epidemiological links to the outbreak in West Africa. Pacific island countries' and areas' relative geographic isolation and lack of travel or trade links between countries with transmission means that EVD importation is very unlikely. However, should a case be imported, the health and non-health consequences would be major. The capacity of Pacific island countries and areas to respond adequately varies greatly between (and within) states but in general is limited. DISCUSSION: This risk assessment highlights the needs to enhance preparedness for EVD in the Pacific by strengthening the capacities outlined in the World Health Organization Framework for Action on Ebola. Priority areas include the ability to detect and respond to suspected EVD cases quickly, isolation and management of cases in appropriately resourced facilities and the prevention of further cases through infection prevention and control. These efforts for Ebola should enhance all-hazards public health preparedness in line with the International Health Regulations (2005).


Assuntos
Surtos de Doenças/prevenção & controle , Doença pelo Vírus Ebola/prevenção & controle , Medição de Risco/métodos , África Ocidental/epidemiologia , Comércio , Doença pelo Vírus Ebola/epidemiologia , Humanos , Ilhas do Pacífico , Viagem , Organização Mundial da Saúde
13.
Artigo em Inglês | MEDLINE | ID: mdl-26045970

RESUMO

BACKGROUND: Marine turtles of all species are capable of being toxic. On 17 October 2010, health authorities in the Federated States of Micronesia were notified of the sudden death of three children and the sickening of approximately 20 other people on Murilo Atoll in Chuuk State. The illnesses were suspected to be the result of mass consumption of a hawksbill turtle (Eretmochelys imbricata). An investigation team was assembled to confirm the cause of the outbreak, describe the epidemiology of cases and provide recommendations for control. METHODS: We conducted chart reviews, interviewed key informants, collected samples for laboratory analysis, performed environmental investigations and conducted a cohort study. RESULTS: Four children and two adults died in the outbreak and 95 others were sickened; 84% of those who ate the turtle became ill (n = 101). The relative risk for developing illness after consuming the turtle was 11.1 (95% confidence inteval: 4.8-25.9); there was a dose-dependent relationship between amount of turtle meat consumed and risk of illness. Environmental and epidemiological investigations revealed no alternative explanation for the mass illness. Laboratory testing failed to identify a causative agent. CONCLUSION: We concluded that turtle poisoning (also called chelonitoxism) was the cause of the outbreak on Murilo. The range of illness described in this investigation is consistent with previously reported cases of chelonitoxism. This devastating incident highlights the dangers, particularly to children, of consuming turtle meat. Future incidents are certain to occur unless action is taken to alter turtle-eating behaviour in coastal communities throughout the world.


Assuntos
Surtos de Doenças , Doenças Transmitidas por Alimentos/etiologia , Carne/intoxicação , Tartarugas , Adulto , Animais , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Masculino , Micronésia/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
14.
BMC Res Notes ; 7: 906, 2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25495697

RESUMO

BACKGROUND: Marburg viruses have been responsible for a number of outbreaks throughout sub-Saharan Africa, as well as a number of laboratory infections. Despite many years of experience with the viruses, little is known about several important epidemiologic parameters relating to the development of Marburg virus disease. The analysis uses pooled data from all Marburg cases between 1967 and 2008 to develop estimates for the incubation period and the clinical onset serial interval (COSI). METHODS: Data were obtained from original outbreak investigation forms (n=406) and from published data (n=45). Incubation periods were calculated for person-to-person exposure, for laboratory-acquired infections, and for presumed zoonotic exposures. Similar analysis was conducted for COSI, using only cases with unambiguous person-to-person transmission where both the primary and the secondary case patients had well-defined illness onsets. RESULTS: Seventy-six cases were retained for the incubation period analysis. Incubation periods ranged from a minimum of 2 days in the case of two laboratory workers to a maximum of at least 26 days for a person-to-person household transmission. Thirty-eight cases were retained for COSI analysis. The median COSI was 11 days, with an interquartile range of 8 to 15. CONCLUSIONS: This study extends the maximum known incubation period of Marburg virus disease to 26 days. The analysis was severely hampered by a lack of completeness in epidemiologic data. It is necessary to prioritize obtaining more accurate epidemiologic data in future outbreaks; greater use of COSI may facilitate an improved understanding of outbreak dynamics in Marburg and other diseases.


Assuntos
Surtos de Doenças , Período de Incubação de Doenças Infecciosas , Doença do Vírus de Marburg/epidemiologia , África Subsaariana/epidemiologia , Animais , Humanos
15.
BMC Infect Dis ; 14: 449, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25141942

RESUMO

BACKGROUND: Cholera continues to be a devastating disease in many developing countries where inadequate safe water supply and poor sanitation facilitate spread. From July 2009 until late 2011 Papua New Guinea experienced the first outbreak of cholera recorded in the country, resulting in >15,500 cases and >500 deaths. METHODS: Using the national cholera database, we analysed the spatio-temporal distribution and clustering of the Papua New Guinea cholera outbreak. The Kulldorff space-time permutation scan statistic, contained in the software package SatScan v9.2 was used to describe the first 8 weeks of the outbreak in Morobe Province before cholera cases spread throughout other regions of the country. Data were aggregated at the provincial level to describe the spread of the disease to other affected provinces. RESULTS: Spatio-temporal and cluster analyses revealed that the outbreak was characterized by three distinct phases punctuated by explosive propagation of cases when the outbreak spread to a new region. The lack of road networks across most of Papua New Guinea is likely to have had a major influence on the slow spread of the disease during this outbreak. CONCLUSIONS: Identification of high risk areas and the likely mode of spread can guide government health authorities to formulate public health strategies to mitigate the spread of the disease through education campaigns, vaccination, increased surveillance in targeted areas and interventions to improve water, sanitation and hygiene.


Assuntos
Cólera/epidemiologia , Surtos de Doenças , Adolescente , Adulto , Criança , Pré-Escolar , Análise por Conglomerados , Controle de Doenças Transmissíveis , Países em Desenvolvimento , Feminino , Geografia , Humanos , Higiene , Lactente , Masculino , Pessoa de Meia-Idade , Papua Nova Guiné/epidemiologia , Saúde Pública , Análise Espaço-Temporal , Vacinação , Microbiologia da Água , Abastecimento de Água , Adulto Jovem
17.
BMC Infect Dis ; 14: 186, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24708723

RESUMO

BACKGROUND: Human leptospirosis is an emerging infectious disease of global significance, and is endemic to several countries in the Pacific. Zoonotic transmission dynamics combined with diagnostic challenges lead to difficulties in prevention and identification of cases. The Federated States of Micronesia (FSM) lacks surveillance data for human leptospirosis. This hospital-based serologic survey sought to estimate the burden of leptospirosis, collect information relating to associated factors, and assess the leptospirosis point-of-care rapid diagnostic test (RDT) commonly used in FSM. METHODS: A four-month hospital-based survey was conducted in Pohnpei State, FSM in 2011. Patients with undifferentiated fevers presenting to hospital were referred for enrolment by physicians. Consenting participants provided paired blood specimens 10-30 days apart, and responded to interview questions regarding demographics, clinical symptoms, exposure to animals, and environmental exposure. Blood samples were subjected to immunochromatographic RDT and confirmed by microscopic agglutination test (MAT). RESULTS: Of 54 participants tested by MAT, 20.4% (95% confidence interval [CI] 10.1-30.6%) showed serologic evidence of acute infection. Occupation student (odds ratio [OR], 17.5; 95% CI: 1.9-161.1) and recreational gardening (OR, 8.6; 95% CI: 1.0-73.8), identified by univariate logistic regression, were associated with infection. The local rapid diagnostic test (RDT) performed with a sensitivity of 69.2 (42.3-89.3 CI) and specificity of 90.0 (81.6-95.6 CI) compared to MAT. CONCLUSIONS: This study demonstrated a high burden of leptospirosis in Pohnpei. Further work is warranted to identify additional risk factors and opportunities to control leptospirosis in Pohnpei and other Pacific settings.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Leptospirose/epidemiologia , Adolescente , Adulto , Criança , Doenças Transmissíveis Emergentes/microbiologia , Feminino , Febre/epidemiologia , Febre/microbiologia , Hospitais/estatística & dados numéricos , Humanos , Leptospirose/diagnóstico , Masculino , Micronésia/epidemiologia , Estudos Soroepidemiológicos , Adulto Jovem
18.
Artigo em Inglês | MEDLINE | ID: mdl-25648967

RESUMO

OBJECTIVE: The objective of this study was to investigate a large outbreak of shigellosis in Papua New Guinea that began in a camp for internally displaced persons before spreading throughout the general community. METHODS: Outbreak mitigation strategies were implemented in the affected area to curtail the spread of the disease. Data were collected from the surveillance system and analysed by time, place and person. Rectal swab samples were tested by standard culture methods and real-time polymerase chain reaction to determine the etiology of the outbreak. RESULTS: Laboratory analysis at two independent institutions established that the outbreak was caused by Shigella sp., with one strain further characterized as Shigella flexneri serotype 2. Approximately 1200 suspected cases of shigellosis were reported in a two-month period from two townships in Morobe Province, Papua New Guinea. The outbreak resulted in at least five deaths, all in young children. DISCUSSION: This outbreak of shigellosis highlights the threat of enteric diseases to vulnerable populations such as internally displaced persons in Papua New Guinea, as has been observed in other global settings.


Assuntos
Surtos de Doenças , Disenteria Bacilar/epidemiologia , Refugiados , Shigella , Adolescente , Adulto , Criança , Pré-Escolar , Disenteria Bacilar/etiologia , Disenteria Bacilar/microbiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Papua Nova Guiné/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real , Shigella flexneri , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-24319609

RESUMO

Under the International Health Regulations (2005), Member States are required to develop capacity in event-based surveillance (EBS). The Papua New Guinea National Department of Health established an EBS system during the influenza pandemic in August 2009. We review its performance from August 2009 to November 2012, sharing lessons that may be useful to other low-resource public health practitioners working in surveillance. We examined the EBS system's event reporting, event verification and response. Characteristics examined included type of event, source of information, timeliness, nature of response and outcome. Sixty-one records were identified. The median delay between onset of the event and date of reporting was 10 days. The largest proportion of reports (39%) came from Provincial Health Offices, followed by direct reports from clinical staff (25%) and reports in the media (11%). Most (84%) of the events were substantiated to be true public health events, and 56% were investigated by the Provincial Health Office alone. A confirmed or probable etiology could not be determined in 69% of true events. EBS is a simple strategy that forms a cornerstone of public health surveillance and response particularly in low-resource settings such as Papua New Guinea. There is a need to reinforce reporting pathways, improve timeliness of reporting, expand sources of information, improve feedback and improve diagnostic support capacity. For it to be successful, EBS should be closely tied to response.


Assuntos
Surtos de Doenças/prevenção & controle , Promoção da Saúde/legislação & jurisprudência , Cooperação Internacional/legislação & jurisprudência , Serviços Preventivos de Saúde/legislação & jurisprudência , Vigilância em Saúde Pública/métodos , Implementação de Plano de Saúde/legislação & jurisprudência , Humanos , Papua Nova Guiné , Saúde Pública
20.
Emerg Infect Dis ; 19(9): 1535-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23965757

RESUMO

In June 2012, health authorities in Papua New Guinea detected an increase in febrile illnesses in Vanimo. Chikungunya virus of the Eastern/Central/Southern African genotype harboring the E1:A226V mutation was identified. This ongoing outbreak has spread to ≥8 other provinces and has had a harmful effect on public health.


Assuntos
Infecções por Alphavirus/epidemiologia , Vírus Chikungunya/genética , Surtos de Doenças , Adolescente , Adulto , Febre de Chikungunya , Vírus Chikungunya/classificação , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Papua Nova Guiné/epidemiologia , Filogenia , Estações do Ano , Proteínas do Envelope Viral/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA