Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19391-19410, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591172

RESUMO

Nowadays, bone systems have a series of consequences that compromise the quality of life mainly due to wear and decreased bioactivity, generally in elderly people and children. In this context, the combination of montmorillonite (MMT-NPs) in a vitreous system such as nanobioglass facilitates the adsorption of biomolecules on the surface and within the interlamellar spaces, enabling the entry of ions by a cation exchange process focusing on increasing the rate of bone formation. This work aims to synthesize and characterize an eco-friendly hybrid reinforcement containing MMT-NPs with nanobioglass doped with magnesium nanoparticles (MgNPs-BV). In this way, MMT-NPs@MgNPs-BV was synthesized by the impregnation method, where an experimental design was used to verify the synthesis conditions. The ideal condition by experimental design was carried out in terms of the characterization and biological activity, where we demonstrated MMT-NPs of 30% w w-1, MgNPs-BV of 6% w w-1, and a calcination temperature of 1273.15 K with a cell viability around 66.87%, an average crystallite diameter of 12.5 nm, and a contact angle of 17.7°. The characterizations confirmed the impregnation method with an average particle size of 51.4 ± 13.1 nm. The mechanical tests showed a hardness of 2.6 GPa with an apparent porosity of 22.2%, similar to human bone. MMT-NPs@MgNPs-BV showed a cell proliferation of around 96% in osteoblastic cells (OFCOL II), with the formation of the apatite phase containing a relation of Ca/P of around 1.63, a biodegradability of 82%, and rapid release of ions with a Ca/P ratio of 1.42. Therefore, the eco-friendly hybrid reinforcement with MMT-NPs and MgNPs-BV shows potential for application with a matrix for biocompatible nanocomposites for bone regeneration.


Assuntos
Bentonita , Nanopartículas , Criança , Humanos , Idoso , Qualidade de Vida , Regeneração Óssea , Íons
2.
Water Air Soil Pollut ; 233(2): 65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35194262

RESUMO

The work aims to synthesize and characterize vegetal charcoal (or biochar) from Syzygium cumini (AC-SC), evaluating the adsorption capacity for dexamethasone drug (DEX) removal, using the kinetic and equilibrium adsorption. The samples were characterized by N2 porosimetry, X-ray diffraction, scanning electron microscopy with energy-dispersive spectroscopy, zeta potential, and zero charge point. Adsorption equilibrium was carried out applying the Langmuir, Freundlich, Redlich-Peterson, Sips, and Toth models, and kinetic adsorption applied the pseudo-first order, pseudo-second order, Elovich, Avrami, and Weber-Morris models. AC-SC showed a heterogeneous and porous surface, negatively charged, crystalline structure, specific surface area of the 2.14 m2 g-1 and pHZCP = 7.36. About the effect of the AC-SC concentration, 5.0 g L-1 showed the best DEX removal (53.02%), about the others' concentration (2.0 and 7.5 g L-1). About the equilibrium and kinetic adsorption, the Sips model and pseudo-second order showed the best experimental data adjusted, indicating that the adsorption monolayer was dependent on the ions onto the biosorbent, with a maximum adsorption capacity of 0.744 mg g-1 after 180 min. Therefore, AC-SC can be used as an alternative material in the removal of organic pollutants, such as drug removal.

3.
Environ Sci Pollut Res Int ; 29(33): 49858-49869, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35220543

RESUMO

The present work aims to evaluate the removal capacity of Rhodamine B dye (RhB) using nano-porous chitosan (NC) from shrimp shells. NC was characterized by XRD, SEM-EDS, N2 porosimetry, zeta potential (ZP), FTIR, DLS, and zero charge point (pHZCP). Compound central rotational design (CCRD) was used to determine the ideal condition and antimicrobial activity was evaluated against different strains. NC showed characteristic of semi-crystalline material with negative charge surface (around - 21.13 mV), and SBET = 1.12 m2 g-1, Vp = 0.0064 cm3 g-1, Dp = 32.09 nm and pHZCP ≈ 7.98. Kinetic adsorption showed the pseudo first-order model had the best fit, with adsorption capacity (q1) between 3.78 and 64.43 mg g-1 and pseudo first-order kinetic constant (k1) between 0.066 and 0.052 min-1. Sips model best described the equilibrium data, with a maximum adsorption capacity of 505.131 mg g-1. Antimicrobial activity was observed at 0.25 mg mL-1 for different strains. Therefore, NC has potential application in the removal of the dye, combining sustainable development associated with nanotechnology.


Assuntos
Anti-Infecciosos , Quitosana , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Rodaminas
4.
J Inorg Organomet Polym Mater ; 32(4): 1213-1222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34840542

RESUMO

Antimicrobial resistance represents a serious concern to public health, being responsible for hospital infections, affecting mainly immunosuppressed patients. Thus, nanotechnology appears as an alternative to solve this problem, through the application of metallic nanoparticles with antimicrobial activity. The present work aims to synthesize and characterize AgNPs from Klebsiella pneumoniae (AgNPs-KP) and Aloe vera extract (AgNPs-AV), evaluating the antimicrobial activity against Klebsiella pneumoniae carbapenemase (KpC) and the cytotoxicity in the L929 cell line. AgNPs were prepared by the biosynthetic method using Klebsiella pneumoniae and were characterized by XRD, FTIR and SEM-EDS. Antimicrobial activity was tested using the MIC and MBC. The cytotoxicity was evaluated by the MTT method and neutral red. The production of ROS and nitrogen RNS tests were performed in the L929 cell line. Thus, it was possible to confirm the production of AgNPs-KP, through morphological, structural and elemental analysis. AgNPs from Klebsiella pneumoniae had potent antimicrobial activity in low concentration against antimicrobial resistant pathogens with MIC 9.76 µg mL-1 and MBC 9.06 µg mL-1. Moreover, AgNPs-KP in concentrations of 10, 30 and 100 µg mL-1 did not show cytotoxic properties for the L929 fibroblast, where only the cytotoxic effect was observed in high concentrations (300 µg mL-1). AgNPs-KP did not produce ROS about the analyzed concentrations and RNS production was only in the highest concentration of 3000 µg mL-1. Therefore, AgNPs biosynthesized by Klebsiella pneumoniae have potential medical applicability as a promising antimicrobial agent, using a simple and low-cost method, correlating nanomedicine as nanostructured materials.

5.
Environ Sci Pollut Res Int ; 29(3): 3794-3807, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34396477

RESUMO

The pollution of wastewater with dyes has become a serious environmental problem around the world. In this context, the work aims to synthesize and characterize a supported nanocatalyst (NZ-180) from rice husk (RH) and alum sludge (AS) incorporating silver (AgNPs@NZ-180) and titanium nanoparticles (TiNPs@NZ-180) for Rhodamine B (RhB) dye degradation, under UV and visible irradiation. Central rotatable composite design (CRCD) was used to determine ideal conditions, using nanocatalyst and dye concentration such as input variables and degradation percentage like response variable. Samples were characterized by XRD, SEM-EDS, N2 porosimetry, DLS, and zeta potential analyses. TiNPs@NZ-180 showed the best photocatalytic activity (62.62 and 50.82% under UV and visible irradiation, respectively). Specific surface area has increased from 35.90 to 418.90 m2 g-1 for NZ-180 and TiNPs@NZ-180, respectively. Photocatalytic performance of TiNPs@NZ-180 has reduced to 8 and 10% after 5 cycles under UV and visible light irradiation. Ideal conditions found by CRCD were 2.75 g L-1 and 20 mg L-1 for nanocatalyst and RhB concentrations, respectively. Therefore, (agro)industrial waste present such an alternative material for application in the removal of wastewater with dyes, which helps in the reduction of the impact of chemicals/pollutants on human and animal health.


Assuntos
Resíduos Industriais , Prata , Animais , Catálise , Corantes , Humanos , Luz , Titânio , Águas Residuárias
6.
J Biotechnol ; 343: 47-51, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34826535

RESUMO

The industrial effluent contaminated with organic pollutants has been causing an increase in the toxicity of the ecosystem, causing a great environmental impact. Thus, the present work aims the green synthesis of silver nanoparticles (AgNPs) from Aloe vera, its characterization and antimicrobial activity against Pseudomonas aeruginosa (ATCC 27853) and Staphylococcus aureus (ATCC 25923). AgNPs were characterized by X-ray diffraction (XRD), Scanning Electronic Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), Zeta Potential (ZP) and N2 porosimetry (BET/BJH method). Antimicrobial activity were carried out by Minimal Inhibitory Concentration (MIC) method. The XRD demonstrated characteristic peaks of AgNPs at 38.29°; 44.55° and 64.81°, and SEM-EDS micrographs showed that AgNPs produced by biomolecules of Aloe vera extract resulted in a weight concentration around 92.59% silver, 7.15% oxygen and 0.26% chlorine. Regarding zeta potential, all samples showed negative electric charge (around -35.3 mV), while N2 porosimetry resulted in a surface specific area of 6.09 m2 g-1, with a volume and diameter pore of 0.032 cm³ g-1 and 33.47, respectively. Antimicrobial activity was observed at 15.62 µg mL-1 and 31.25 µg mL-1 for P. aeruginosa and S. aureus, respectively. Thus, AgNPs can be considered a promising nanoparticle for degradation of organic pollutants in aqueous solution as well as an adjuvant for treatment of microbial infections.


Assuntos
Aloe/química , Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Anti-Infecciosos/farmacologia , Biomassa , Ecossistema , Química Verde , Extratos Vegetais , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA