Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Resour Res ; 57(9): e2020WR028876, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34690378

RESUMO

Spatial estimates of crop evapotranspiration with high accuracy from the field to watershed scale have become increasingly important for water management, particularly over irrigated agriculture in semiarid regions. Here, we provide a comprehensive assessment on patterns of annual agricultural water use over California's Central Valley, using 30-m daily evapotranspiration estimates based on Landsat satellite data. A semiempirical Priestley-Taylor approach was locally optimized and cross-validated with available field measurements for major crops including alfalfa, almond, citrus, corn, pasture, and rice. The evapotranspiration estimates explained >70% variance in daily measurements from independent sites with an RMSE of 0.88 mm day-1. When aggregated over the Valley, we estimated an average evapotranspiration of 820 ± 290 mm yr-1 in 2014. Agricultural water use varied significantly across and within crop types, with a coefficient of variation ranging from 8% for Rice (1,110 ± 85 mm yr-1) to 59% for Pistachio (592 ± 352 mm yr-1). Total water uses in 2016 increased by 9.6%, as compared to 2014, mostly because of land-use conversion from fallow/idle land to cropland. Analysis across 134 Groundwater Sustainability Agencies (GSAs) further showed a large variation of agricultural evapotranspiration among and within GSAs, especially for tree crops, e.g., almond evapotranspiration ranging from 339 ± 80 mm yr-1 in Tracy to 1,240 ± 136 mm yr-1 in Tri-County Water Authority. Continuous monitoring and assessment of the dynamics and spatial heterogeneity of agricultural evapotranspiration provide data-driven guidance for more effective land use and water planning across scales.

2.
Proc Natl Acad Sci U S A ; 105(49): 19336-41, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19052233

RESUMO

The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO(2) uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO(2) uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle-climate models.


Assuntos
Carbono/metabolismo , Clima , Ecossistema , Nitrogênio/metabolismo , Árvores/metabolismo , Monitoramento Ambiental/métodos , Retroalimentação , Modelos Biológicos , Folhas de Planta/metabolismo , Astronave , Temperatura
3.
Sci Total Environ ; 309(1-3): 237-51, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12798107

RESUMO

The absorption coefficient a(p) [m(-1)] as well as the mass absorption coefficient sigma(p) [m(2)/g] has been estimated for PM10 and PM2.5 in four towns located in southern Poland, based on the assumption that the reflectance of aerosol-laden filters is a good proxy for the absorptivity of aerosols. The optical properties of the airborne particles were also compared with their surface composition obtained by photoelectron spectroscopy (XPS). It was found that coarse particles, which constituted 20-30% of PM10, exhibited insignificant contribution to the absorption. The most absorptive aerosols were found in the towns located in Upper Silesia, a highly industrialized area. This reflects both the relative content of carbon in PM2.5 and the mass concentration of the fine mode. It was found that oxides and sulfates play an important role in promoting the reflectance of light from aerosols in the winter. These results support the suggestion that the revision of existing air quality standards for particulate pollution is needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA