Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Blood Adv ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768429

RESUMO

Warts, Hypogammglobulinemia, Infections, Myelokathexis (WHIM) syndrome is a rare immunodeficiency disease that results from impaired leukocyte trafficking (myelokathexis) predominately caused by gain-of-function variants in C-X-C chemokine receptor type 4 (CXCR4). Clinical manifestations of WHIM syndrome can differ in familial forms or in people harboring identical CXCR4 variants. All known pathogenic CXCR4 variants associated with WHIM syndrome (CXCR4WHIM) to date are localized in the intracellular C-terminus of CXCR4. We identified 4 unrelated patients with variable WHIM-like clinical presentations harboring a novel heterozygous CXCR4 variant (c.250G>C; p.D84H) localized at a highly conserved position in the transmembrane domain of the receptor outside the C-terminus. Functional characterization of the CXCR4D84Hvariant (CXCR4D84H) using patient-derived peripheral blood mononuclear cells and in vitro cellular assaysshow decreased CXCR4 internalization and increased chemotaxis in response to CXCL12, similar to known CXCR4WHIM, but also revealed unique features of CXCR4D84H signaling to cAMP, Ca2+ mobilization and AKT/ERK pathways. These findings are consistent with molecular dynamics simulations that show disruption of the Na+ binding pocket by D84H, resulting in collapse of the hydrophobic gate above and destabilization of the inactive state of CXCR4. Mavorixafor, a CXCR4 antagonist being evaluated in clinical trials for chronic neutropenia and WHIM syndrome, normalized CXCL12-mediated chemotaxis of CXCR4D84H patient lymphocytes ex vivo and improved WBC and subset counts in 1 patient with CXCR4D84H enrolled in the chronic neutropenia phase 1b clinical trial (NCT04154488). The present study expands the current understanding of CXCR4 function and genotype-phenotype correlations in WHIM syndrome and in people with WHIM-like phenotypes.

2.
EMBO Rep ; 24(9): e56766, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37469276

RESUMO

During mitotic entry of vertebrate cells, nuclear pore complexes (NPCs) are rapidly disintegrated. NPC disassembly is initiated by hyperphosphorylation of linker nucleoporins (Nups), which leads to the dissociation of FG repeat Nups and relaxation of the nuclear permeability barrier. However, less is known about disintegration of the huge nuclear and cytoplasmic rings, which are formed by annular assemblies of Y-complexes that are dissociated from NPCs as intact units. Surprisingly, we observe that Y-complex Nups display slower dissociation kinetics compared with other Nups during in vitro NPC disassembly, indicating a mechanistic difference in the disintegration of Y-based rings. Intriguingly, biochemical experiments reveal that a fraction of Y-complexes remains associated with mitotic ER membranes, supporting recent microscopic observations. Visualization of mitotic Y-complexes by super-resolution microscopy demonstrates that they form two classes of higher order assemblies: large clusters at kinetochores and small, focal ER-associated assemblies. These, however, lack features qualifying them as persisting ring-shaped subassemblies previously proposed to serve as structural templates for NPC reassembly during mitotic exit, which helps to refine current models of nuclear reassembly.


Assuntos
Microscopia , Mitose , Poro Nuclear , Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/genética
3.
Genes Immun ; 23(6): 196-204, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36089616

RESUMO

Warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in CXCR4 C-terminus. We assessed genotype-phenotype correlations for known pathogenic CXCR4 variants and in vitro response of each variant to mavorixafor, an investigational CXCR4 antagonist. We used cell-based assays to analyze CXCL12-induced receptor trafficking and downstream signaling of 14 pathogenic CXCR4 variants previously identified in patients with WHIM syndrome. All CXCR4 variants displayed impaired receptor trafficking, hyperactive downstream signaling, and enhanced chemotaxis in response to CXCL12. Mavorixafor inhibited CXCL12-dependent signaling and hyperactivation in cells harboring CXCR4WHIM mutations. A strong correlation was found between CXCR4 internalization defect and severity of blood leukocytopenias and infection susceptibility, and between AKT activation and immunoglobulin A level and CD4+ T-cell counts. This study is the first to show WHIM syndrome clinical phenotype variability as a function of both CXCR4WHIM genotype diversity and associated functional dysregulation. Our findings suggest that CXCR4 internalization may be used to assess the pathogenicity of CXCR4 variants in vitro and also as a potential WHIM-related disease biomarker. The investigational CXCR4 antagonist mavorixafor inhibited CXCL12-dependent signaling in all tested CXCR4-variant cell lines at clinically relevant concentrations.


Assuntos
Agamaglobulinemia , Síndromes de Imunodeficiência , Neutropenia , Verrugas , Agamaglobulinemia/genética , Aminoquinolinas , Benzimidazóis , Biomarcadores , Butilaminas , Estudos de Associação Genética , Humanos , Imunoglobulina A/genética , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Síndromes de Imunodeficiência/patologia , Neutropenia/genética , Neutropenia/metabolismo , Doenças da Imunodeficiência Primária , Proteínas Proto-Oncogênicas c-akt/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Verrugas/genética , Verrugas/metabolismo , Verrugas/patologia
4.
J Clin Immunol ; 42(8): 1748-1765, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35947323

RESUMO

Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS) is a combined immunodeficiency caused by gain-of-function mutations in the C-X-C chemokine receptor type 4 (CXCR4) gene. We characterize a unique international cohort of 66 patients, including 57 (86%) cases previously unreported, with variable clinical phenotypes. Of 17 distinct CXCR4 genetic variants within our cohort, 11 were novel pathogenic variants affecting 15 individuals (23%). All variants affect the same CXCR4 region and impair CXCR4 internalization resulting in hyperactive signaling. The median age of diagnosis in our cohort (5.5 years) indicates WHIM syndrome can commonly present in childhood, although some patients are not diagnosed until adulthood. The prevalence and mean age of recognition and/or onset of clinical manifestations within our cohort were infections 88%/1.6 years, neutropenia 98%/3.8 years, lymphopenia 88%/5.0 years, and warts 40%/12.1 years. However, we report greater prevalence and variety of autoimmune complications of WHIM syndrome (21.2%) than reported previously. Patients with versus without family history of WHIM syndrome were diagnosed earlier (22%, average age 1.3 years versus 78%, average age 5 years, respectively). Patients with a family history of WHIM syndrome also received earlier treatment, experienced less hospitalization, and had less end-organ damage. This observation reinforces previous reports that early treatment for WHIM syndrome improves outcomes. Only one patient died; death was attributed to complications of hematopoietic stem cell transplantation. The variable expressivity of WHIM syndrome in pediatric patients delays their diagnosis and therapy. Early-onset bacterial infections with severe neutropenia and/or lymphopenia should prompt genetic testing for WHIM syndrome, even in the absence of warts.


Assuntos
Agamaglobulinemia , Síndromes de Imunodeficiência , Linfopenia , Neutropenia , Verrugas , Humanos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/epidemiologia , Síndromes de Imunodeficiência/genética , Verrugas/diagnóstico , Verrugas/epidemiologia , Verrugas/genética , Agamaglobulinemia/genética , Receptores CXCR4/genética , Neutropenia/genética , Linfopenia/complicações , Progressão da Doença
5.
Artigo em Inglês | MEDLINE | ID: mdl-33753404

RESUMO

The nuclear compartment is delimited by a specialized expanded sheet of the endoplasmic reticulum (ER) known as the nuclear envelope (NE). Compared to the outer nuclear membrane and the contiguous peripheral ER, the inner nuclear membrane (INM) houses a unique set of transmembrane proteins that serve a staggering range of functions. Many of these functions reflect the exceptional position of INM proteins at the membrane-chromatin interface. Recent research revealed that numerous INM proteins perform crucial roles in chromatin organization, regulation of gene expression, genome stability, and mediation of signaling pathways into the nucleus. Other INM proteins establish mechanical links between chromatin and the cytoskeleton, help NE remodeling, or contribute to the surveillance of NE integrity and homeostasis. As INM proteins continue to gain prominence, we review these advancements and give an overview on the functional versatility of the INM proteome.


Assuntos
Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Animais , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor de Lamina B
6.
Mol Biol Cell ; 30(4): 427-440, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30586323

RESUMO

The nuclear envelope (NE) aids in organizing the interphase genome by tethering chromatin to the nuclear periphery. During mitotic entry, NE-chromatin contacts are broken. Here, we report on the consequences of impaired NE removal from chromatin for cell division of human cells. Using a membrane-chromatin tether that cannot be dissociated when cells enter mitosis, we show that a failure in breaking membrane-chromatin interactions impairs mitotic chromatin organization, chromosome segregation and cytokinesis, and induces an aberrant NE morphology in postmitotic cells. In contrast, chromosome segregation and cell division proceed successfully when membrane attachment to chromatin is induced during metaphase, after chromosomes have been singularized and aligned at the metaphase plate. These results indicate that the separation of membranes and chromatin is critical during prometaphase to allow for proper chromosome compaction and segregation. We propose that one cause of these defects is the multivalency of membrane-chromatin interactions.


Assuntos
Cromatina/metabolismo , Segregação de Cromossomos , Mitose , Membrana Nuclear/metabolismo , Forma do Núcleo Celular , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas de Membrana/metabolismo , Metáfase , Ligação Proteica , Solubilidade
7.
Nucleus ; 9(1): 350-367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29943658

RESUMO

Eukaryotic cells have 2 to ​3 discrete nucleoli required for ribosome synthesis. Nucleoli are phase separated nuclear sub-organelles. Here we examined the role of nuclear Lamins and nucleolar factors in modulating the compartmentalization and dynamics of histone 2B (H2B-ECFP) in the nucleolus. Live imaging and Fluorescence Recovery After Photobleaching (FRAP) of labelled H2B, showed that the depletion of Lamin B1, Fibrillarin (FBL) or Nucleostemin (GNL3), enhances H2B-ECFP mobility in the nucleolus. Furthermore, Nucleolin knockdown significantly decreases H2B-ECFP compartmentalization in the nucleolus, while H2B-ECFP residence and mobility in the nucleolus was prolonged upon Nucleolin overexpression. Co-expression of N-terminal and RNA binding domain (RBD) deletion mutants of Nucleolin or inhibiting 45S rRNA synthesis reduces the sequestration of H2B-ECFP in the nucleolus. Taken together, these studies reveal a crucial role of Nucleolin-rRNA complex in modulating the compartmentalization, stability and dynamics of H2B within the nucleolus.


Assuntos
Nucléolo Celular/metabolismo , Histonas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ciclo Celular/efeitos dos fármacos , Nucléolo Celular/efeitos dos fármacos , Dactinomicina/farmacologia , Células HCT116 , Histonas/efeitos dos fármacos , Humanos , Células MCF-7 , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Nucleolina
8.
Elife ; 62017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28826471

RESUMO

Newly synthesized membrane proteins are targeted to the inner nuclear membrane (INM) by diffusion within the membrane system of the endoplasmic reticulum (ER), translocation through nuclear pore complexes (NPCs) and retention on nuclear partners. Using a visual in vitro assay we previously showed that efficient protein targeting to the INM depends on nucleotide hydrolysis. We now reveal that INM targeting is GTP-dependent. Exploiting in vitro reconstitution and in vivo analysis of INM targeting, we establish that Atlastins, membrane-bound GTPases of the ER, sustain the efficient targeting of proteins to the INM by their continued activity in preserving ER topology. When ER topology is altered, the long-range diffusional exchange of proteins in the ER network and targeting efficiency to the INM are diminished. Highlighting the general importance of proper ER topology, we show that Atlastins also influence NPC biogenesis and timely exit of secretory cargo from the ER.


Assuntos
Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Células HeLa , Humanos , Ligação Proteica , Transporte Proteico
9.
Methods Mol Biol ; 1411: 461-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27147059

RESUMO

Newly synthesized membrane proteins are inserted into the endoplasmic reticulum (ER) from where they are constantly sorted to various cellular compartments. To analyze and visualize sorting of membrane proteins to the inner nuclear membrane (INM), we developed a trap-release system that uncouples membrane integration into the ER from transport. This assay allows the simultaneous release of a large pool of an INM-destined membrane protein from the ER and microscopy-based monitoring of targeting to the INM. The use of semi-permeabilized HeLa cells further enables the identification and characterization of essential requirements of the targeting process. This protocol provides a detailed description of reporter construction, in vitro reconstitution, and visualization of trafficking.


Assuntos
Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Linhagem Celular , Expressão Gênica , Ordem dos Genes , Genes Reporter , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA