Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826458

RESUMO

Ferrous iron (Fe2+) is required for the growth and virulence of many pathogenic bacteria, including Vibrio cholerae (Vc), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe2+ into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB. Recent reanalysis has shown that NFeoBs can be classified as either GTP-specific or NTP-promiscuous, but the structural and mechanistic bases for these differences were not known. To explore this intriguing property of FeoB, we solved the X-ray crystal structures of VcNFeoB in both the apo and GDP-bound forms. Surprisingly, this promiscuous NTPase displayed a canonical NFeoB G-protein fold like GTP-specific NFeoBs. Using structural bioinformatics, we hypothesized that residues surrounding the nucleobase could be important for both nucleotide affinity and specificity. We then solved the X-ray crystal structures of N150T VcNFeoB in the apo and GDP-bound forms to reveal H-bonding differences surround the guanine nucleobase. Interestingly, isothermal titration calorimetry revealed similar binding thermodynamics of the WT and N150T proteins to guanine nucleotides, while the behavior in the presence of adenine nucleotides was dramatically different. AlphaFold models of VcNFeoB in the presence of ADP and ATP showed important conformational changes that contribute to nucleotide specificity among FeoBs. Combined, these results provide a structural framework for understanding FeoB nucleotide promiscuity, which could be an adaptive measure utilized by pathogens to ensure adequate levels of intracellular iron across multiple metabolic landscapes.

2.
Microb Biotechnol ; 17(5): e14456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801001

RESUMO

EXECUTIVE SUMMARY: Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative-the IMiLI-is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators-learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators-learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships-a global societally relevant microbiology education ecosystem-in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. ABSTRACT: The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us-individuals/communities/nations/the human world-and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT: our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091-1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.


Assuntos
Microbiologia , Microbiologia/educação , Humanos , Biotecnologia
3.
Infect Immun ; 92(1): e0033423, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38099658

RESUMO

Infection by the enteric pathogen Shigella flexneri requires transit through the gastrointestinal tract and invasion of and replication within the cells of the host colonic epithelium. This process exposes the pathogen to a range of diverse microenvironments. Furthermore, the unique composition and physical environment of the eukaryotic cell cytosol represents a stressful environment for S. flexneri, and extensive physiological adaptations are needed for the bacterium to thrive. In this work, we show that disrupting synthesis of the stringent response alarmone (p)ppGpp in S. flexneri diminished expression of key virulence genes, including ipaA, ipaB, ipaC, and icsA, and it reduced bacterial invasion and intercellular spread. Deletion of the (p)ppGpp synthase gene relA alone had no effect on S. flexneri virulence, but disruption of both relA and the (p)ppGpp synthase/hydrolase gene spoT resulted in loss of (p)ppGpp synthesis and virulence. While the relA spoT deletion mutant was able to invade a cultured human epithelial cell monolayer, albeit at reduced levels, it was unable to maintain the infection and spread to adjacent cells, as indicated by loss of plaque formation. Complementation with spoT on a plasmid vector restored plaque formation. Thus, SpoT alone is sufficient to provide the necessary level of (p)ppGpp for virulence. These results indicate that (p)ppGpp is required for S. flexneri virulence and adaptation to the intracellular environment, adding to the repertoire of signaling pathways that affect Shigella pathogenesis.


Assuntos
Proteínas de Bactérias , Guanosina Pentafosfato , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Guanosina Pentafosfato/metabolismo , Shigella flexneri , Células Cultivadas
4.
Front Microbiol ; 14: 1219359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469426

RESUMO

Introduction: Feo is the most widespread and conserved system for ferrous iron uptake in bacteria, and it is important for virulence in several gastrointestinal pathogens. However, its mechanism remains poorly understood. Hitherto, most studies regarding the Feo system were focused on Gammaproteobacterial models, which possess three feo genes (feoA, B, and C) clustered in an operon. We found that the human pathogen Helicobacter pylori possesses a unique arrangement of the feo genes, in which only feoA and feoB are present and encoded in distant loci. In this study, we examined the functional significance of this arrangement. Methods: Requirement and regulation of the individual H. pylori feo genes were assessed through in vivo assays and gene expression profiling. The evolutionary history of feo was inferred via phylogenetic reconstruction, and AlphaFold was used for predicting the FeoA-FeoB interaction. Results and Discussion: Both feoA and feoB are required for Feo function, and feoB is likely subjected to tight regulation in response to iron and nickel by Fur and NikR, respectively. Also, we established that feoA is encoded in an operon that emerged in the common ancestor of most, but not all, helicobacters, and this resulted in feoA transcription being controlled by two independent promoters. The H. pylori Feo system offers a new model to understand ferrous iron transport in bacterial pathogens.

5.
Microbiol Spectr ; : e0491722, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916917

RESUMO

Vibrio cholerae is a Gram-negative pathogen, living in constant competition with other bacteria in marine environments and during human infection. One competitive advantage of V. cholerae is the ability to metabolize diverse carbon sources, such as chitin and citrate. We observed that when some V. cholerae strains were grown on a medium with citrate, the medium's chemical composition turned into a hostile alkaline environment for Gram-negative bacteria, such as Escherichia coli and Shigella flexneri. We found that although the ability to exclude competing bacteria was not contingent on exogenous citrate, V. cholerae C6706 citrate metabolism mutants ΔoadA-1, ΔcitE, and ΔcitF were not able to inhibit S. flexneri or E. coli growth. Lastly, we demonstrated that while the V. cholerae C6706-mediated increased medium pH was necessary for the enteric exclusion phenotype, secondary metabolites, such as bicarbonate (protonated to carbonate in the raised pH) from the metabolism of citrate, enhanced the ability to inhibit the growth of E. coli. These data provide a novel example of how V. cholerae outcompetes other Gram-negative bacteria. IMPORTANCE Vibrio cholerae must compete with other bacteria in order to cause disease. Here, we show that V. cholerae creates an alkaline environment, which is able to inhibit the growth of other enteric bacteria. We demonstrate that V. cholerae environmental alkalization is linked to the capacity of the bacteria to metabolize citrate. This behavior could potentially contribute to V. cholerae's ability to colonize the human intestine.

6.
mBio ; 13(5): e0236022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36102517

RESUMO

The role of the gut microbiota in the pathogenesis of Shigella flexneri remains largely unknown. To understand the impact of the gut microbiota on S. flexneri virulence, we examined the effect of interspecies interactions with Bacteroides thetaiotaomicron, a prominent member of the gut microbiota, on S. flexneri invasion. When grown in B. thetaiotaomicron-conditioned medium, S. flexneri showed reduced invasion of human epithelial cells. This decrease in invasiveness of S. flexneri resulted from a reduction in the level of the S. flexneri master virulence regulator VirF. Reduction of VirF corresponded with a decrease in expression of a secondary virulence regulator, virB, as well as expression of S. flexneri virulence genes required for invasion, intracellular motility, and spread. Repression of S. flexneri virulence factors by B. thetaiotaomicron-conditioned medium was not caused by either a secreted metabolite or secreted protein but rather was due to the presence of B. thetaiotaomicron outer membrane vesicles (OMVs) in the conditioned medium. The addition of purified B. thetaiotaomicron OMVs to S. flexneri growth medium recapitulated the inhibitory effects of B. thetaiotaomicron-conditioned medium on invasion, virulence gene expression, and virulence protein levels. Total lipids extracted from either B. thetaiotaomicron cells or B. thetaiotaomicron OMVs also recapitulated the effects of B. thetaiotaomicron-conditioned medium on expression of the S. flexneri virulence factor IpaC, indicating that B. thetaiotaomicron OMV lipids, rather than a cargo contained in the vesicles, are the active factor responsible for the inhibition of S. flexneri virulence. IMPORTANCE Shigella flexneri is the causative agent of bacillary dysentery in humans. Shigella spp. are one of the leading causes of diarrheal morbidity and mortality, especially among children in low- and middle-income countries. The rise of antimicrobial resistance combined with the lack of an effective vaccine for Shigella heightens the importance of studies aimed at better understanding previously uncharacterized aspects of Shigella pathogenesis. Here, we show that conditioned growth medium from the commensal bacterium Bacteroides thetaiotaomicron represses the invasion of S. flexneri. This repression is due to the presence of B. thetaiotaomicron outer membrane vesicles. These findings establish a role for interspecies interactions with a prominent member of the gut microbiota in modulating the virulence of S. flexneri and identify a novel function of outer membrane vesicles in interbacterial signaling between members of the gut microbiota and an enteric pathogen.


Assuntos
Anti-Infecciosos , Bacteroides thetaiotaomicron , Criança , Humanos , Shigella flexneri/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Anti-Infecciosos/metabolismo , Lipídeos
7.
mBio ; 13(1): e0351221, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012344

RESUMO

Iron acquisition is essential for almost all living organisms. In certain environments, ferrous iron is the most prevalent form of this element. Feo is the most widespread system for ferrous iron uptake in bacteria and is critical for virulence in some species. The canonical architecture of Feo consists of a large transmembrane nucleoside triphosphatase (NTPase) protein, FeoB, and two accessory cytoplasmic proteins, FeoA and FeoC. The role of the latter components and the mechanism by which Feo orchestrates iron transport are unclear. In this study, we conducted a comparative analysis of Feo protein sequences to gain insight into the evolutionary history of this transporter. We identified instances of how horizontal gene transfer contributed to the evolution of Feo. Also, we found that FeoC, while absent in most lineages, is largely present in the Gammaproteobacteria group, although its sequence is poorly conserved. We propose that FeoC, which may couple FeoB NTPase activity with pore opening, was an ancestral element that has been dispensed with through mutations in FeoA and FeoB in some lineages. We provide experimental evidence supporting this hypothesis by isolating and characterizing FeoC-independent mutants of the Vibrio cholerae Feo system. Also, we confirmed that the closely related species Shewanella oneidensis does not require FeoC; thus, Vibrio FeoC sequences may resemble transitional forms on an evolutionary pathway toward FeoC-independent transporters. Finally, by combining data from our bioinformatic analyses with this experimental evidence, we propose an evolutionary model for the Feo system in bacteria. IMPORTANCE Feo, a ferrous iron transport system composed of three proteins (FeoA, -B, and -C), is the most prevalent bacterial iron transporter. It plays an important role in iron acquisition in low-oxygen environments and some host-pathogen interactions. The large transmembrane protein FeoB provides the channel for the transport of iron into the bacterial cell, but the functions of the two small, required accessory proteins FeoA and FeoC are not well understood. Analysis of the evolution of this transporter shows that FeoC is poorly conserved and has been lost from many bacterial lineages. Experimental evidence indicates that FeoC may have different functions in different species that retain this protein, and the loss of FeoC is promoted by mutations in FeoA or by the fusion of FeoA and FeoB.


Assuntos
Proteínas de Bactérias , Nucleosídeo-Trifosfatase , Proteínas de Bactérias/metabolismo , Nucleosídeo-Trifosfatase/metabolismo , Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ferro/metabolismo
8.
EcoSal Plus ; 9(2): eESP00342020, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910574

RESUMO

Iron is an essential element for Escherichia, Salmonella, and Shigella species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.


Assuntos
Regulação Bacteriana da Expressão Gênica , Shigella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia , Ferro/metabolismo , Salmonella/genética , Salmonella/metabolismo , Shigella/genética
9.
Metallomics ; 13(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34673980

RESUMO

Iron is an essential element for Vibrio cholerae to survive, and Feo, the major bacterial system for ferrous iron transport, is important for growth of this pathogen in low-oxygen environments. To gain insight into its biochemical mechanism, we evaluated the effects of widely used ATPase inhibitors on the ATP hydrolysis activity of the N-terminal domain of V. cholerae FeoB. Our results showed that sodium orthovanadate and sodium azide effectively inhibit the catalytic activity of the N-terminal domain of V. cholerae FeoB. Further, sodium orthovanadate was the more effective inhibitor against V. cholerae ferrous iron transport in vivo. These results contribute to a more comprehensive biochemical understanding of Feo function, and shed light on designing effective inhibitors against bacterial FeoB proteins.


Assuntos
Ferro/metabolismo , Vanadatos/farmacologia , Vibrio cholerae/metabolismo , Trifosfato de Adenosina/metabolismo , Azidas/farmacologia , Transporte Biológico , Catálise , Hidrólise , Simulação de Acoplamento Molecular
10.
J Agric Food Chem ; 69(34): 9968-9978, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406764

RESUMO

Staphylococcus aureus RF122 is a major pathogen that causes bovine mastitis, which is the most prevalent and costly disease in the milk and dairy industry. S. aureus expresses various virulence factors that are especially highly associated with iron metabolism, and the bacterial ferrous iron transport system Feo is important for bacterial growth or virulence in mammalian hosts. In this study, we evaluated a new antimicrobial agent, PHT-427, targeting the S. aureus RF122 Feo system for the prevention of bovine mastitis. Various analyses on in vitro enzymatic assays, growth inhibition, virulence expressions, and toxicity of animal model systems were conducted to characterize the inhibition properties of PHT-427. This small molecule efficiently inhibited enzyme activity of FeoB and bacterial growth. PHT-427 attenuated various virulence factors related to milk quality, including staphyloxanthin production, biofilm formation, and coagulation. Considering the high frequency of antibiotic-resistant S. aureus in bovine mastitis isolates, PHT-427 synergistically enhanced bacterial antibiotic susceptibility and further inhibited global Gram-positive bacterial growth. Unlike its effects on bacteria, the inhibitor did not show any toxicity on animal model systems. These results indicate that the S. aureus Feo system represents a good target for antimicrobial strategies, and this new antimicrobial agent may represent a promising biotechnological application for preventing S. aureus-induced bovine mastitis in the milk and dairy industry.


Assuntos
Anti-Infecciosos , Mastite Bovina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Bovinos , Feminino , Mastite Bovina/tratamento farmacológico , Mastite Bovina/prevenção & controle , Testes de Sensibilidade Microbiana , Leite , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Staphylococcus aureus
11.
mBio ; 12(1)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531387

RESUMO

CsrA is a posttranscriptional global regulator in Vibrio cholerae Although CsrA is critical for V. cholerae survival within the mammalian host, the regulatory targets of CsrA remain mostly unknown. To identify pathways controlled by CsrA, RNA-seq transcriptome analysis was carried out by comparing the wild type and the csrA mutant grown to early exponential, mid-exponential, and stationary phases of growth. This enabled us to identify the global effects of CsrA-mediated regulation throughout the V. cholerae growth cycle. We found that CsrA regulates 22% of the V. cholerae transcriptome, with significant regulation within the gene ontology (GO) processes that involve amino acid transport and metabolism, central carbon metabolism, lipid metabolism, iron uptake, and flagellum-dependent motility. Through CsrA-RNA coimmunoprecipitation experiments, we found that CsrA binds to multiple mRNAs that encode regulatory proteins. These include transcripts encoding the major sigma factors RpoS and RpoE, which may explain how CsrA regulation affects such a large proportion of the V. cholerae transcriptome. Other direct targets include flrC, encoding a central regulator in flagellar gene expression, and aphA, encoding the virulence gene transcription factor AphA. We found that CsrA binds to the aphA mRNA both in vivo and in vitro, and CsrA significantly increases AphA protein synthesis. The increase in AphA was due to increased translation, not transcription, in the presence of CsrA, consistent with CsrA binding to the aphA transcript and enhancing its translation. CsrA is required for the virulence of V. cholerae and this study illustrates the central role of CsrA in virulence gene regulation.IMPORTANCEVibrio cholerae, a Gram-negative bacterium, is a natural inhabitant of the aqueous environment. However, once ingested, this bacterium can colonize the human host and cause the disease cholera. In order to successfully transition between its aqueous habitat and the human host, the bacterium must sense changes in its environment and rapidly alter gene expression. Global regulators, including CsrA, play an integral role in altering the expression of a large number of genes to promote adaptation and survival, which is required for intestinal colonization. We used transcriptomics and a directed CsrA-RNA coimmunoprecipitation to characterize the CsrA regulon and found that CsrA alters the expression of more than 800 transcripts in V. cholerae Processes regulated by CsrA include motility, the rugose phenotype, and virulence pathways. CsrA directly binds to the aphA transcript and positively regulates the production of the virulence regulator AphA. Thus, CsrA regulates multiple processes that have been linked to pathogenesis.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Ligação a RNA/fisiologia , Vibrio cholerae/genética , Regulação Bacteriana da Expressão Gênica , Regulon , Transativadores/genética , Transcriptoma , Vibrio cholerae/patogenicidade , Virulência
12.
ACS Chem Biol ; 16(1): 136-149, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33378170

RESUMO

The emergence of multidrug-resistant Staphylococcus aureus strains has become a serious clinical problem. Iron is absolutely required for the bacterial growth, virulence associated with colonization, and survival from the host immune system. The FeoB protein is a major iron permease in bacterial ferrous iron transport systems (Feo) that has been shown to play a crucial role in virulence of some pathogenic bacteria. However, FeoB is still uncharacterized in Gram-positive pathogens, and its effects on S. aureus pathogenesis are unknown. In this study, we identified a novel inhibitor, GW3965·HCl, that targets FeoB in S. aureus. The molecule effectively inhibited FeoB in vitro enzyme activity, bacterial growth, and virulence factor expression. Genome-editing and metabolomic analyses revealed that GW3965·HCl inhibited FeoB function and affected the associated mechanisms with reduced iron availability in S. aureus. Gentamicin resistance and Caenorhabditis elegans infection assays further demonstrated the power of GW3965·HCl as a safe and efficient antibacterial agent. In addition to S. aureus, GW3965·HCl also presented its effectiveness on inhibition of the FeoB activity and growth of Gram-positive bacteria. This novel inhibitor will provide new insight for developing a next-generation antibacterial therapy.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Benzoatos/farmacologia , Benzilaminas/farmacologia , Compostos Ferrosos/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Proteínas de Bactérias/química , Transporte Biológico , Caenorhabditis elegans/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Gentamicinas/farmacologia , Bactérias Gram-Positivas/crescimento & desenvolvimento
13.
Metallomics ; 12(12): 2065-2074, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33174898

RESUMO

Feo is the most widely conserved system for ferrous iron transport in prokaryotes, and it is important for virulence in some pathogens. However, its mechanism of iron transport is not fully understood. In this study, we used full-length Vibrio cholerae FeoB (VcFeoB) as a model system to study whether its enzymatic activity is affected by regulatory factors commonly associated with FeoB proteins from other species or with G-proteins that have homology to FeoB. VcFeoB showed a higher rate of hydrolysis of both ATP and GTP than its N-terminal domain alone; likewise, ions such as K+ and Fe2+ did not modulate its nucleotide hydrolysis. We also showed that the three V. cholerae Feo proteins (FeoA, FeoB, and FeoC) work in a 1 : 1 : 1 molar ratio in vivo. Although both FeoA and FeoC are required for Feo-mediated iron transport, neither of these proteins affected the VcFeoB NTPase rate. These results are consistent with an active transport mechanism independent of stimulatory factors and highlight the importance of using full-length FeoB proteins as a reliable proxy to study Feo-mediated iron transport in vitro.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Trifosfato/metabolismo , Vibrio cholerae/metabolismo , Cólera/microbiologia , Humanos , Hidrólise , Ferro/metabolismo , Potássio/metabolismo
14.
Arch Biochem Biophys ; 685: 108350, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32220566

RESUMO

Iron is an essential requirement for the survival and virulence of most bacteria. The bacterial ferrous iron transporter protein FeoB functions as a major reduced iron transporter in prokaryotes, but its biochemical mechanism has not been fully elucidated. In the present study, we compared enzymatic properties of the cytosolic portions of pathogenic bacterial FeoBs to elucidate each bacterial strain-specific characteristic of the Feo system. We show that bacterial FeoBs are classified into two distinct groups that possess either a sole GTPase or an NTPase with a substrate promiscuity. This difference in nucleotide preference alters cellular requirements for monovalent and divalent cations. While the hydrolytic activity of the GTP-dependent FeoBs was stimulated by potassium, the action of the NTP-dependent FeoBs was not significantly affected by the presence of monovalent cations. Mutation of Asn11, having a role in potassium-dependent GTP hydrolysis, changed nucleotide specificity of the NTP-dependent FeoB, resulting in loss of ATPase activity. Sequence analysis suggested a possible association of alanine in the G5 motif for the NTP-dependent activity in FeoBs. This demonstration of the distinct enzymatic properties of bacterial FeoBs provides important insights into mechanistic details of Feo iron transport processes, as well as offers a promising species-specific anti-virulence target.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Bactérias/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/química , Hidrólise , Mutagênese Sítio-Dirigida , Mutação , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Potássio/metabolismo , Ligação Proteica , Alinhamento de Sequência , Especificidade por Substrato
15.
Curr Protoc Microbiol ; 55(1): e93, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31816179

RESUMO

Shigella species, which are closely related to Escherichia coli, can easily be maintained and stored in the laboratory. This article includes protocols for preparation of routine growth conditions and media, for storage of the bacteria, and for monitoring of the presence of the virulence plasmid. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Growth of S. flexneri from frozen stocks or agar stabs Basic Protocol 2: Growth of S. flexneri in rich liquid medium Alternate Protocol 1: Growth of S. flexneri in rich defined medium Alternate Protocol 2: Growth of S. flexneri in minimal medium Basic Protocol 3: Storage of S. flexneri in frozen stocks Alternate Protocol 3: Storage of S. flexneri in agar stabs.


Assuntos
Técnicas Bacteriológicas/métodos , Preservação Biológica/métodos , Shigella/crescimento & desenvolvimento , Meios de Cultura/química , Plasmídeos/análise , Shigella/genética
16.
mBio ; 10(3)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164471

RESUMO

CsrA, an RNA-binding global regulator, is an essential protein in Vibrio choleraeV. cholerae CsrA is regulated by three small RNAs (sRNAs), namely, CsrB, CsrC, and CsrD, which act to sequester and antagonize the activity of CsrA. Although the sRNAs were considered to be largely redundant, we found that they differ in expression, half-life, and the ability to regulate CsrA. Further, we identified a feedback loop in the Csr system in which CsrA increases the synthesis of these antagonistic sRNAs. Because the Csr sRNAs are positively regulated by VarA, we determined the effects of CsrA on VarA levels. The level of VarA was reduced in a csrA mutant, and we found that CsrA directly bound to varA mRNA in an electrophoretic mobility shift assay in vitro and in an CsrA-RNA immunoprecipitation assay in vivo Thus, varA mRNA is an in vivo-verified direct target of CsrA in V. cholerae, and this is the first demonstration of CsrA directly binding to a varA/uvrY/gacA homolog. Additionally, we demonstrated that a varA translational fusion was less active in a csrA mutant than in wild-type V. cholerae, suggesting that CsrA enhances varA translation. We propose that this autoregulatory feedback loop, in which CsrA increases the production of the nonredundant Csr sRNAs by regulating the amount of VarA, provides a mechanism for fine-tuning the availability of CsrA and, thus, of its downstream targets.IMPORTANCEVibrio cholerae is a major human pathogen, causing epidemics and pandemics of cholera. V. cholerae persists in the aquatic environment, providing a constant source for human infection. Success in transitioning from the environment to the human host and back requires the bacterium to rapidly respond and to adjust its gene expression and metabolism to these two very different habitats. Our findings show that CsrA, an RNA-binding regulatory protein, plays a central role in regulating these transitions. CsrA activity is controlled by the antagonistic sRNAs CsrB, CsrC, and CsrD, and these sRNAs respond to changes in the availability of nutrients. CsrA autoregulates its own activity by controlling these sRNAs via their primary regulator VarA. Thus, the change in CsrA availability in response to nutrient availability allows V. cholerae to alter gene expression in response to environmental cues.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Vibrio cholerae/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética
17.
SLAS Discov ; 24(5): 597-605, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31039677

RESUMO

Iron is an essential requirement for the survival and virulence for bacteria. The bacterial ferrous iron transporter protein B (FeoB) functions as a major iron transporter in prokaryotes and has an N-terminal domain (NFeoB) with homology to eukaryotic G-proteins. Its GTPase activity is required for ferrous iron uptake, making it a potential target for antivirulence therapies. Here, two assay strategies relying on different spectroscopic readouts are described to monitor NFeoB GTPase activity. The first one is the colorimetric-based platform that utilizes a malachite green reagent to monitor phosphate production from GTP hydrolysis. The absorbance change directly relates to the GTPase activity of NFeoB. The assay was further improved by the addition of Tween-20 and miniaturized in a 384-well plate format with a 10 µL assay volume. The second format is a luminescence-based platform, measuring the GTP depletion by using a modified GTPase-Glo assay from Promega. In this platform, the luminescence signal correlates to the amount of GTP remaining, allowing for the direct calculation of GTP hydrolysis by NFeoB. The colorimetric platform was tested in a high-throughput manner against a custom-assembled library of a~2000 small molecules and was found to be simple, cost-effective, and robust. Additionally, the luminescence-based platform demonstrated its capability as an orthogonal assay to monitor GTPase activity, providing a valid and convenient method to filter false hits. These two assay platforms are proven to offset the limitations of each platform while enhancing overall quality and success rates.


Assuntos
Proteínas de Transporte de Cátions/isolamento & purificação , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , GTP Fosfo-Hidrolases/isolamento & purificação , Ensaios de Triagem em Larga Escala , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Colorimetria/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Luminescência , Modelos Moleculares , Domínios Proteicos/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
18.
Proc Natl Acad Sci U S A ; 116(10): 4599-4604, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760591

RESUMO

The Feo ferrous iron transporter is widely distributed among bacteria and archaea, but its mechanism of transport has not been fully elucidated. In Vibrio cholerae, the transport system requires three proteins: the small cytosolic proteins FeoA and FeoC and a large cytoplasmic-membrane-associated protein FeoB, which has an N-terminal G-protein domain. We show that, in contrast to Escherichia coli FeoB, which is solely a GTPase, the V. cholerae and Helicobacter pylori FeoB proteins have both GTPase and ATPase activity. In V. cholerae, mutation of the G4 motif, responsible for hydrogen bonding with the guanine base, abolished the GTPase activity but not ATPase activity. The ATPase activity of the G4 motif mutants was sufficient for Feo function in the absence of GTPase. We show that the serine and asparagine residues in the G5 motif likely play a role in the ATPase activity, and substitution of these residues with those found in the corresponding positions in E. coli FeoB resulted in similar nucleotide hydrolysis activity in the E. coli protein. These results add significantly to our understanding of the NTPase domain of FeoB and its role in Feo function.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Compostos Ferrosos/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Vibrio cholerae/enzimologia , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Transporte Biológico , GTP Fosfo-Hidrolases/genética , Regulação Bacteriana da Expressão Gênica , Transporte de Íons , Nucleotídeos/metabolismo , Domínios Proteicos , Vibrio cholerae/química , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
19.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30642906

RESUMO

The enteric bacterium and intracellular human pathogen Shigella causes hundreds of millions of cases of the diarrheal disease shigellosis per year worldwide. Shigella is acquired by ingestion of contaminated food or water; upon reaching the colon, the bacteria invade colonic epithelial cells, replicate intracellularly, spread to adjacent cells, and provoke an intense inflammatory response. There is no animal model that faithfully recapitulates human disease; thus, cultured cells have been used to model Shigella pathogenesis. However, the use of transformed cells in culture does not provide the same environment to the bacteria as the normal human intestinal epithelium. Recent advances in tissue culture now enable the cultivation of human intestinal enteroids (HIEs), which are derived from human intestinal stem cells, grown ex vivo, and then differentiated into "mini-intestines." Here, we demonstrate that HIEs can be used to model Shigella pathogenesis. We show that Shigella flexneri invades polarized HIE monolayers preferentially via the basolateral surface. After S. flexneri invades HIE monolayers, S. flexneri replicates within HIE cells and forms actin tails. S. flexneri also increases the expression of HIE proinflammatory signals and the amino acid transporter SLC7A5. Finally, we demonstrate that disruption of HIE tight junctions enables S. flexneri invasion via the apical surface.


Assuntos
Disenteria Bacilar/microbiologia , Mucosa Intestinal/microbiologia , Modelos Biológicos , Organoides/microbiologia , Shigella flexneri/fisiologia , Técnicas de Cultura de Células , Disenteria Bacilar/genética , Disenteria Bacilar/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Shigella flexneri/patogenicidade , Células-Tronco/citologia , Células-Tronco/microbiologia , Virulência
20.
PLoS One ; 13(12): e0209391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30571742

RESUMO

A strain of Zika virus (ZIKV) of Asian origin associated with birth defects and neurological disorders has emerged and spread through the Americas. ZIKV was first isolated in the blood of nonhuman primates in Africa and has been detected in the blood, saliva, and urine of a few catarrhine species in both Africa and Asia, suggesting that nonhuman primates may serve as both a source and a reservoir of the virus. The recent introduction of ZIKV to human populations in the Americas presents the potential for the virus to spread into nonhuman primate reservoirs. Thus, it is critical to develop efficient and noninvasive detection methods to monitor the spread of the virus in wild nonhuman primate populations. Here, we describe a method for ZIKV detection in noninvasively collected fecal samples of a Neotropical primate. Fecal samples were collected from two captive squirrel monkeys (Saimiri boliviensis boliviensis) that were experimentally infected with ZIKV (Strain Mexico_1_44) and an additional two uninfected squirrel monkeys. Nucleic acids were extracted from these samples, and RT-qPCR was used to assay for the presence of ZIKV using primers flanking a 101 bp region of the NS5 gene. In both ZIKV-inoculated animals, ZIKV was detected 5-11 days post-infection, but was not detected in the uninfected animals. We compare the fecal results to ZIKV detection in serum, saliva, and urine samples from the same individuals. Our results indicate that fecal detection is a cost-effective, noninvasive method for monitoring wild populations of Neotropical primates as possible ZIKV reservoirs.


Assuntos
Reservatórios de Doenças/virologia , Fezes/virologia , RNA Viral/isolamento & purificação , Infecção por Zika virus/diagnóstico , Zika virus/isolamento & purificação , Animais , Modelos Animais de Doenças , Monitoramento Ambiental/métodos , Feminino , Humanos , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saimiri/virologia , Saliva/virologia , Proteínas não Estruturais Virais/genética , Zika virus/genética , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/veterinária , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA