Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Adv ; 8(49): eabq8437, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490346

RESUMO

Dysregulation of kinase signaling pathways favors tumor cell survival and therapy resistance in cancer. Here, we reveal a posttranslational regulation of kinase signaling and nuclear receptor activity via deubiquitination in T cell acute lymphoblastic leukemia (T-ALL). We observed that the ubiquitin-specific protease 11 (USP11) is highly expressed and associates with poor prognosis in T-ALL. USP11 ablation inhibits leukemia progression in vivo, sparing normal hematopoiesis. USP11 forms a complex with USP7 to deubiquitinate the oncogenic lymphocyte cell-specific protein-tyrosine kinase (LCK) and enhance its activity. Impairment of LCK activity leads to increased glucocorticoid receptor (GR) expression and glucocorticoids sensitivity. Genetic knockout of USP7 improved the antileukemic efficacy of glucocorticoids in vivo. The transcriptional activation of GR target genes is orchestrated by the deubiquitinase activity and mediated via an increase in enhancer-promoter interaction intensity. Our data unveil how dysregulated deubiquitination controls leukemia survival and drug resistance, suggesting previously unidentified therapeutic combinations toward targeting leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Linhagem Celular Tumoral , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/uso terapêutico , Peptidase 7 Específica de Ubiquitina/metabolismo
2.
Pediatr Blood Cancer ; 69(4): e29490, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34866312

RESUMO

INTRODUCTION: There are clinical reports that the incorporation of dasatinib may increase the frequency of osteonecrosis in acute lymphoblastic leukemia (ALL) treatment regimens. No rigorous testing of this hypothesis is available to guide clinicians. METHODS: We tested whether oral dasatinib increased the frequency of dexamethasone-induced osteonecrosis in a murine model and tested its effects on dexamethasone's antileukemic efficacy in a murine BCR-ABL+ model of ALL. RESULTS: Dasatinib did not change the frequency of osteonecrosis (p = .99) nor of arteriopathy (p = .36) in dexamethasone-treated mice when given at dosages that achieved clinically relevant steady-state dasatinib plasma concentrations of 53.1 ng/ml (95% CI: 43.5-57.3 ng/ml). These dasatinib exposures were not associated with increased dexamethasone plasma exposure in nonleukemia-bearing mice. These same dosages were not associated with any decrement in antileukemic efficacy of dexamethasone in a responsive BCR-ABL+ model of ALL. CONCLUSIONS: Based on the results of our preclinical murine studies, we conclude that dasatinib is unlikely to increase the osteonecrotic effects of dexamethasone in ALL regimens.


Assuntos
Osteonecrose , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Dasatinibe , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Proteínas de Fusão bcr-abl , Humanos , Camundongos , Osteonecrose/induzido quimicamente , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico
3.
Pediatr Blood Cancer ; 68(10): e29183, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34121318

RESUMO

BACKGROUND: Osteonecrosis is a devastating side effect of acute lymphoblastic leukemia (ALL) therapy. Associations between bone density loss and osteonecrosis have sparked interest in using bisphosphonates to reduce this complication. PROCEDURE: We assessed the impact of zoledronic acid (ZA) on the development of osteonecrosis in murine models when used either throughout therapy (continuous administration) or late in therapy after vascular lesions have developed but before osteonecrosis has occurred. Effects on bone density were measured using microcomputed tomography (µCT)-assessed tibial cortical thickness, while osteonecrosis was assessed histologically in the distal femur. Effects on antileukemic efficacy of chemotherapy were evaluated in both immunocompetent/syngeneic and patient-derived xenograft (PDX) models. RESULTS: Continuous administration of ZA with chemotherapy prevented chemotherapy-associated bone loss (p < .001) and reduced osteonecrosis (p = .048). Late initiation of ZA diminished bone loss (p < .001) but had no impact on the development of osteonecrosis (p = .93). In the immunocompetent murine ALL model, mice treated with ZA and chemotherapy succumbed to leukemia sooner than mice treated with chemotherapy alone (p = .046). Analysis using PDX showed a nonsignificant decrease in survival with ZA (p = .17). CONCLUSION: Our data indicate ZA may prevent osteonecrosis if begun with chemotherapy but showed no benefit when administered later in therapy. However, ZA may also reduce the antileukemic efficacy of chemotherapy.


Assuntos
Conservadores da Densidade Óssea , Osteonecrose , Leucemia-Linfoma Linfoblástico de Células Precursoras , Ácido Zoledrônico/uso terapêutico , Animais , Densidade Óssea , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos , Imidazóis , Camundongos , Osteonecrose/diagnóstico por imagem , Osteonecrose/tratamento farmacológico , Osteonecrose/prevenção & controle , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Resultado do Tratamento , Microtomografia por Raio-X
5.
Haematologica ; 106(8): 2095-2101, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32675219

RESUMO

Recent clinical trials in children with acute lymphoblastic leukemia (ALL) indicate that severe hypertriglyceridemia (> 1000 mg/dL) during therapy is associated with increased frequency of symptomatic osteonecrosis. Interventions to lower triglycerides have been considered, but there have been no pre-clinical studies investigating impact of lowering triglycerides on osteonecrosis risk, nor whether such interventions interfere with the antileukemic efficacy of ALL treatment. We utilized our clinically relevant mouse model of dexamethasone-induced osteonecrosis to determine if fenofibrate decreased osteonecrosis. To test whether fenofibrate affected the antileukemic efficacy of dexamethasone, we utilized a BCR-ABL+ model of ALL. Serum triglycerides were reduced with fenofibrate throughout treatment, with the most pronounced 4.5-fold decrease at week 3 (p<1x10-6). Both frequency (33% versus 74%, p=0.006) and severity (median necrosis score of 0 versus 75; p=6x10-5) of osteonecrosis were reduced with fenofibrate. Fenofibrate had no impact on BCR-ABL+ ALL survival (p=0.65) nor on the antileukemic properties of dexamethasone (p=0.49). These data suggest that lowering triglycerides with fenofibrate reduces dexamethasone-induced osteonecrosis while maintaining antileukemic efficacy, and thus may be considered for clinical trials.


Assuntos
Fenofibrato , Osteonecrose , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Dexametasona , Proteínas de Fusão bcr-abl , Camundongos , Osteonecrose/induzido quimicamente , Osteonecrose/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Triglicerídeos
6.
Sci Rep ; 10(1): 2359, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047189

RESUMO

The effects of vitamin A and/or vitamin D deficiency were studied in an Arf-/- BCR-ABL acute lymphoblastic leukemia murine model. Vitamin D sufficient mice died earlier (p = 0.003) compared to vitamin D deficient (VDD) mice. Vitamin A deficient (VAD) mice fared worst with more rapid disease progression and decreased survival. Mice deficient for vitamins A and D (VADD) had disease progression similar to VAD mice. Regulatory T cells, previously shown to associate with poor BCR-ABL leukemia control, were present at higher frequencies among CD4+ splenocytes of vitamin A deficient vs. sufficient mice. In vitro studies demonstrated 1,25-dihydroxyvitamin D (1,25(OH)2VD3) increased the number of BCR-ABL ALL cells only when co-cultured with bone marrow stroma. 1,25(OH)2VD3 induced CXCL12 expression in vivo and in vitro in stromal cells and CXCL12 increased stromal migration and the number of BCR-ABL blasts. Vitamin D plus leukemia reprogrammed the marrow increasing production of collagens, potentially trapping ALL blasts. Vitamin A (all trans retinoic acid, ATRA) treated leukemic cells had increased apoptosis, decreased cells in S-phase, and increased cells in G0/G1. ATRA signaled through the retinoid X receptor to decrease BCR-ABL leukemic cell viability. In conclusion, vitamin A and D deficiencies have opposing effects on mouse survival from BCR-ABL ALL.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Vitamina A/metabolismo , Vitamina D/metabolismo , Animais , Apoptose , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores X de Retinoides/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Vitamina A/genética , Vitamina A/farmacologia , Vitamina D/genética , Vitamina D/farmacologia
7.
PLoS One ; 14(5): e0216328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31059548

RESUMO

INTRODUCTION: Combination therapy for acute lymphoblastic leukemia (ALL) is highly effective but results in significant toxicity including osteonecrosis. Asparaginase is known to potentiate both the antileukemic and osteonecrosis-inducing effects of dexamethasone. The schedule of dexamethasone alters osteonecrosis risk. However, the effects of the interaction with asparaginase are unknown when dexamethasone is given on a discontinuous schedule. METHODS: Using the murine model of osteonecrosis, we compared the frequency of osteonecrosis in mice receiving discontinuous dexamethasone (3.5 days/ week) with mice receiving asparaginase and discontinuous dexamethasone. We then tested the effect on antileukemic efficacy using six pediatric ALL xenografts. RESULTS: The addition of asparaginase to discontinuous dexamethasone did not alter the rate of osteonecrosis compared to dexamethasone alone (7/35 in dexamethasone with asparaginase combination vs. 10/36 in dexamethasone alone, p = 0.62) despite increasing steady-state plasma dexamethasone levels (103.9 nM vs. 33.4 nM, p = 9.2x10-7). Combination therapy with asparaginase and dexamethasone demonstrated synergistic antileukemic effects across all six xenografts studied. CONCLUSIONS: When discontinuous dexamethasone was given, its anti-leukemic activity synergized with asparaginase but the osteonecrosis-worsening effects of asparaginase (above dexamethasone alone) were not observed. Thus, there is a favorable drug interaction (unchanged toxicity, synergistic efficacy) between discontinuous dexamethasone and asparaginase.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Asparaginase/administração & dosagem , Dexametasona/administração & dosagem , Osteonecrose/induzido quimicamente , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Asparaginase/efeitos adversos , Dexametasona/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Xenoenxertos , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações
8.
PLoS One ; 10(8): e0135134, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252865

RESUMO

Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia.


Assuntos
Antineoplásicos/administração & dosagem , Dexametasona/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Criança , Pré-Escolar , Corticosterona/administração & dosagem , Modelos Animais de Doenças , Intervalo Livre de Doença , Esquema de Medicação , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Osteonecrose/prevenção & controle , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA