Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(16): eabq0651, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083530

RESUMO

Although microglial activation is widely found in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the underlying mechanism(s) are poorly understood. Here, using human-induced pluripotent stem cell-derived microglia-like cells (hiPSC-MG) harboring the most common ALS/FTD mutation (C9orf72, mC9-MG), gene-corrected isogenic controls (isoC9-MG), and C9orf72 knockout hiPSC-MG (C9KO-MG), we show that reduced C9ORF72 protein is associated with impaired phagocytosis and an exaggerated immune response upon stimulation with lipopolysaccharide. Analysis of the C9ORF72 interactome revealed that C9ORF72 interacts with regulators of autophagy and functional studies showed impaired initiation of autophagy in mC9-MG and C9KO-MG. Coculture studies with motor neurons (MNs) demonstrated that the autophagy deficit in mC9-MG drives increased vulnerability of mC9-MNs to excitotoxic stimulus. Pharmacological activation of autophagy ameliorated both cell-autonomous functional deficits in hiPSC-MG and MN death in MG-MN coculture. Together, these findings reveal an important role for C9ORF72 in regulating immune homeostasis and identify dysregulation in myeloid cells as a contributor to neurodegeneration in ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Microglia/metabolismo , Autofagia/genética
2.
Stem Cell Res ; 49: 102046, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096385

RESUMO

Microglia are resident tissue macrophages of the central nervous system (CNS) that arise from erythromyeloid progenitors during embryonic development. They play essential roles in CNS development, homeostasis and response to disease. Since microglia are difficult to procure from the human brain, several protocols have been developed to generate microglia-like cells from human induced pluripotent stem cells (hiPSCs). However, some concerns remain over the purity and quality of in vitro generated microglia. Here, we describe a new protocol that does not require co-culture with neural cells and yields cultures of 100% P2Y12+ 95% TMEM119+ ramified human microglia-like cells (hiPSC-MG). In the presence of neural precursor cell-conditioned media, hiPSC-MG expressed high levels of human microglia signature genes, including SALL1, CSF1R, P2RY12, TMEM119, TREM2, HEXB and SIGLEC11, as revealed by whole-transcriptome analysis. Stimulation of hiPSC-MG with lipopolysaccharide resulted in downregulation of P2Y12 expression, induction of IL1B mRNA expression and increase in cell capacitance. HiPSC-MG were phagocytically active and maintained their cell identity after transplantation into murine brain slices and human brain spheroids. Together, our new protocol for the generation of microglia-like cells from human iPSCs will facilitate the study of human microglial function in health and disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microglia , Animais , Encéfalo , Humanos , Glicoproteínas de Membrana , Camundongos , Neurônios , Receptores Imunológicos
3.
Nat Neurosci ; 22(1): 78-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559476

RESUMO

Microglia, the specialized innate immune cells of the CNS, play crucial roles in neural development and function. Different phenotypes and functions have been ascribed to rodent microglia, but little is known about human microglia (huMG) heterogeneity. Difficulties in procuring huMG and their susceptibility to cryopreservation damage have limited large-scale studies. Here we applied multiplexed mass cytometry for a comprehensive characterization of postmortem huMG (103 - 104 cells). We determined expression levels of 57 markers on huMG isolated from up to five different brain regions of nine donors. We identified the phenotypic signature of huMG, which was distinct from peripheral myeloid cells but was comparable to fresh huMG. We detected microglia regional heterogeneity using a hybrid workflow combining Cytobank and R/Bioconductor for multidimensional data analysis. Together, these methodologies allowed us to perform high-dimensional, large-scale immunophenotyping of huMG at the single-cell level, which facilitates their unambiguous profiling in health and disease.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Encéfalo/citologia , Feminino , Humanos , Imunofenotipagem , Lectinas Tipo C/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Microglia/citologia , Células Mieloides/citologia , Células Mieloides/metabolismo , Fenótipo , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA