Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500950

RESUMO

Perovskite-type lanthanum iron oxide, LaFeO3, is a promising photocathode material that can achieve water splitting under visible light. However, the performance of this photoelectrode material is limited by significant electron-hole recombination. In this work, we explore different strategies to optimize the activity of a nanostructured porous LaFeO3 film, which demonstrates enhanced photoelectrocatalytic activity due to the reduced diffusion length of the charge carriers. We found that surface passivation is not an efficient approach for enhancing the photoelectrochemical performance of LaFeO3, as it is sufficiently stable under photoelectrocatalytic conditions. Instead, the deposition of a Pt co-catalyst was shown to be essential for maximizing the photoelectrochemical activity both in hydrogen evolution and oxygen reduction reactions. Illumination-induced band edge unpinning was found to be a major challenge for the further development of LaFeO3 photocathodes for water-splitting applications.

2.
Phys Chem Chem Phys ; 22(8): 4581-4591, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32048660

RESUMO

The elucidation of complex electrochemical reaction mechanisms requires advanced models with many intermediate reaction steps, which are governed by a large number of parameters like reaction rate constants and charge transfer coefficients. Overcomplicated models introduce high uncertainty in the choice of the parameters and cannot be used to obtain meaningful insights on the reaction pathway. We describe a new framework of optimal reaction mechanism selection based on the mean-field microkinetic modeling approach (MF-MKM) and adaptive sampling of model parameters. The optimal model is selected to provide both the accurate fitting of experimental data within the experimental error and low uncertainty of model parameters choice. Generally, this approach can be applied for any complex heterogeneous electrochemical reaction. We use the "2e-" electrocatalytic oxygen reduction reaction (ORR) on carbon nanotubes (CNTs) as a representative example of a sufficiently complex reaction. Rotating disk electrode (RDE) experimental data for both ORR in O2-saturated 0.1 M KOH solution and hydrogen peroxide oxidation/reduction reaction (HPRR/HPOR) in Ar-purged 0.1 M KOH solution with different HO2- concentrations were used to show the dependence of the model parameters uniqueness on the completeness of the experimental dataset. It is demonstrated that the optimal reaction mechanism for ORR on CNT and available experimental data consists of O2 adsorption step on the electrode surface and effective step of two-electron reduction to HO2- combined with its desorption from the electrode. The low uncertainty of estimated model parameters is provided only within the 2-step model being applied to the full available experimental dataset. The assessment of elementary step mechanisms on electro-catalytic materials including carbon-based electrodes requires more diverse experimental data and/or higher precision of experimental measurements to facilitate more precise microkinetic modeling of more complex reaction mechanisms.

3.
ChemSusChem ; 10(24): 4805-4811, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29164810

RESUMO

Classical Li-ion battery technology is based on the insertion of lithium ions into cathode materials involving metal (cationic) redox reactions. However, this vision is now being reconsidered, as many new-generation electrode materials with enhanced reversible capacities operate through combined cationic and anionic (non-metal) reversible redox processes or even exclusively through anionic redox transformations. Anionic participation in the redox reactions is observed in materials with more pronounced covalency, which is less typical for oxides, but quite common for phosphides or chalcogenides. In this Concept, we would like to draw the reader's attention to this new idea, especially, as it applies to transition-metal polychalcogenides, such as FeS2 , VS4 , TiS3 , NbS3 , TiS4 , MoS3 , etc., in which the key role is played by the (S-S)2- /2 S2- redox reaction. The exploration and better understanding of the anion-driven chemistry is important for designing advanced materials for battery and other energy-related applications.

4.
Chem Asian J ; 8(9): 2015-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729427

RESUMO

We have fluorinated few-layer graphene (FLG) by using a low-temperature fluorination route with gaseous ClF3. The treatment process resulted in a new graphene derivative with a finite approximate composition of C2F. TEM studies showed that the product consisted of thin transparent sheets with no more than 10 fluorographene layers stacked together. Spectroscopic methods revealed a predominantly covalent nature of the C-F bonds in the as-synthesized product and we found no evidence for the existence of so-called "semi-ionic" C-F bonds, as observed in bulk C(x)F. In contrast to the case of graphite and typical (thick) expanded graphites, fluorination of FLG did not lead to the intercalation of ClF3 molecules, owing to the lack of a 3D layered structure. The approximate "critical" number of graphene layers that were necessary to form a phase of intercalated compound was estimated to be more than 12, thus providing a "chemical proof" of the difference between the properties of few-layered graphenes and bulk graphites. Fluorographene C2F was successfully delaminated into thinner layers in organic solvents, which is an important property for its integration into electronic devices, nanohybrids, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA