Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Parasit Vectors ; 16(1): 179, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37269018

RESUMO

BACKGROUND: Hippoboscid flies (Diptera: Hippoboscidae), also known as louse flies or keds, are obligate blood-sucking ectoparasites of animals, and accidentally of humans. The potential role of hippoboscids as vectors of human and veterinary pathogens is being increasingly investigated, but the presence and distribution of infectious agents in louse flies is still unknown in parts of Europe. Here, we report the use of molecular genetics to detect and characterize vector-borne pathogens in hippoboscid flies infesting domestic and wild animals in Austria. METHODS: Louse flies were collected from naturally infested cattle (n = 25), sheep (n = 3), and red deer (n = 12) across Austria between 2015 and 2019. Individual insects were morphologically identified to species level and subjected to DNA extraction for molecular pathogen screening and barcoding. Genomic DNA from each louse fly was screened for Borrelia spp., Bartonella spp., Trypanosomatida, Anaplasmataceae, Filarioidea and Piroplasmida. Obtained sequences of Trypanosomatida and Bartonella spp. were further characterized by phylogenetic and haplotype networking analyses. RESULTS: A total of 282 hippoboscid flies corresponding to three species were identified: Hippobosca equina (n = 62) collected from cattle, Melophagus ovinus (n = 100) from sheep and Lipoptena cervi (n = 120) from red deer (Cervus elaphus). Molecular screening revealed pathogen DNA in 54.3% of hippoboscids, including infections with single (63.39%), two (30.71%) and up to three (5.90%) distinct pathogens in the same individual. Bartonella DNA was detected in 36.9% of the louse flies. Lipoptena cervi were infected with 10 distinct and previously unreported Bartonella sp. haplotypes, some closely associated with strains of zoonotic potential. DNA of trypanosomatids was identified in 34% of hippoboscids, including the first description of Trypanosoma sp. in H. equina. Anaplasmataceae DNA (Wolbachia spp.) was detected only in M. ovinus (16%), while < 1% of the louse flies were positive for Borrelia spp. and Filarioidea. All hippoboscids were negative for Piroplasmida. CONCLUSIONS: Molecular genetic screening confirmed the presence of several pathogens in hippoboscids infesting domestic and wild ruminants in Austria, including novel pathogen haplotypes of zoonotic potential (e.g. Bartonella spp.) and the first report of Trypanosoma sp. in H. equina, suggesting a potential role of this louse fly as vector of animal trypanosomatids. Experimental transmission studies and expanded monitoring of hippoboscid flies and hippoboscid-associated pathogens are warranted to clarify the competence of these ectoparasites as vectors of infectious agents in a One-Health context.


Assuntos
Anaplasmataceae , Anoplura , Bartonella , Cervos , Dípteros , Piroplasmida , Humanos , Animais , Ovinos , Bovinos , Cervos/parasitologia , Áustria/epidemiologia , Filogenia , Ruminantes , Bartonella/genética , Anaplasmataceae/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-36037562

RESUMO

Chagas disease, caused by the protozoa Trypanosoma cruzi, is a potentially life-threatening parasitic zoonosis infecting 6-7 million people worldwide, mainly in Latin America. Due to the limited numbers of drugs available against this neglected disease and their frequent adverse effects, novel anti-chagasic agents are urgently needed. Cichorium intybus L. (chicory) is a bioactive plant with potent activity against parasitic nematodes, but its effects on protozoans are poorly known and no studies have explored its trypanocidal potential. Here, we investigated the activity of C. intybus against extracellular and intracellular stages of T. cruzi, including the prediction of trypanocidal compounds by metabolomic analyses and bioactivity-based molecular networking. Purified C. intybus extracts were prepared from leaves and roots of five C. intybus cultivars (cv. 'Benulite', 'Goldine', 'Larigot', 'Maestoso' and 'Spadona'). All C. intybus extracts induced concentration-dependent effects against T. cruzi trypomastigotes. C. intybus leaf extracts had higher trypanocidal selectivity and lower cytotoxicity on mammalian cells than root extracts. The leaf extract of C. intybus cv. Goldine also significantly reduced the number of mammalian cells infected with T. cruzi amastigotes. Metabolomic and bioactivity-based molecular networking analyses revealed 11 compounds in C. intybus leaves strongly linked with activity against trypomastigotes, including the sesquiterpene lactone lactucin, and flavonoid- and fatty acid-derivatives. Furthermore, seven distinct C. intybus molecules (including two sesquiterpene lactone-derivatives) were predicted to be involved in reducing the number of mammalian cells infected with amastigotes. This is the first report of the anti-protozoal activity of C. intybus against trypanosomatid parasites and expands our understanding of the anti-parasitic effects of this plant and its bioactive metabolites. Further studies to elucidate the anti-protozoal compound(s) in C. intybus and their mode(s) of action will improve our knowledge of using this bioactive plant as a promising source of novel broad-spectrum anti-parasitic compounds with associated health benefits and biomedical potential.


Assuntos
Doença de Chagas , Cichorium intybus , Tripanossomicidas , Trypanosoma cruzi , Humanos , Animais , Lactonas/farmacologia , Metabolômica , Doença de Chagas/tratamento farmacológico , Extratos Vegetais/farmacologia , Tripanossomicidas/farmacologia , Mamíferos
3.
Parasitol Res ; 120(9): 3319-3324, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34347167

RESUMO

High-performance-validated tests are essential for successful epidemiological monitoring, surveillance of parasitic infections, and comparative studies in wildlife populations. The Mini-FLOTAC is a novel flotation-based technique for the sensitive detection and quantification of gastrointestinal parasites that is recently being explored for use in wildlife. A limitation of any flotation-based copromicroscopic method is the selection of the flotation solution (FS), which might influence the performance of the test. However, no study has compared the influence of using different FS in the Mini-FLOTAC technique for parasite detection in wild birds. Here, we evaluated the diagnostic performance of the Mini-FLOTAC in three waterbird host species using two widely used FS: saturated salt (NaCl; specific gravity 1.20) and saturated zinc sulfate (ZnSO4; specific gravity 1.35). One hundred fresh fecal samples were analyzed for parasite fecal egg counts (FEC). Regardless of the host species, fecal samples evaluated with the Mini-FLOTAC method using ZnSO4 resulted in a significantly higher detection rate and higher FEC of strongylid, capillarid, cestode, and trematode parasites, than samples analyzed with the NaCl solution. Our concise study demonstrated the importance of using an appropriate FS for the identification of parasite eggs in wildlife species, especially in hosts with an expected aggregated distribution and low parasite load such as waterbird hosts. The higher analytical sensitivity of the Mini-FLOTAC technique achieved with ZnSO4, and its applicability to fieldwork, highlights this method as a promising tool for the quantitative surveillance of parasite infections in wild bird populations.


Assuntos
Aves/parasitologia , Helmintos , Enteropatias Parasitárias , Animais , Animais Selvagens/parasitologia , Fezes/parasitologia , Helmintos/isolamento & purificação , Enteropatias Parasitárias/diagnóstico , Enteropatias Parasitárias/veterinária , Contagem de Ovos de Parasitas , Sensibilidade e Especificidade
4.
Front Pharmacol ; 12: 674520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149425

RESUMO

Widespread use of antimicrobial drugs has led to high levels of drug-resistance in pathogen populations and a need for novel sources of anti-bacterial and anti-parasitic compounds. Macroalgae (seaweed) are potentially a rich source of bioactive compounds, and several species have traditionally been used as vermifuges. Here, we investigated the anti-parasitic properties of four common cold-water Nordic seaweeds; Palmaria palmata (Rhodophyta), Laminaria digitata, Saccharina latissima and Ascophyllum nodosum (Ochrophyta, Phaeophyceae). Screening of organic extracts against helminths of swine (Ascaris suum) and sheep (Teladorsagia circumcincta) revealed that S. latissima and L. digitata had particularly high biological activity. A combination of molecular networking and bio-guided fractionation led to the isolation of six compounds from extracts of these two species identified in both fermented and non-fermented samples. The six isolated compounds were tentatively identified by using MS-FINDER as five fatty acids and one monoglyceride: Stearidonic acid (1), Eicosapentaenoic acid (2), Alpha-Linolenic acid (3), Docosahexaenoic acid (4), Arachidonic acid (5), and Monoacylglycerol (MG 20:5) (6). Individual compounds showed only modest activity against A. suum, but a clear synergistic effect was apparent when selected compounds were tested in combination. Collectively, our data reveal that fatty acids may have a previously unappreciated role as natural anti-parasitic compounds, which suggests that seaweed products may represent a viable option for control of intestinal helminth infections.

5.
Int J Parasitol Drugs Drug Resist ; 15: 105-114, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33618233

RESUMO

Increasing resistance towards anthelmintic drugs has necessitated the search for alternative treatments for the control of gastrointestinal nematode parasites. Animals fed on chicory (Cichorium intybus L.), a temperate (pasture) crop, have reduced parasite burdens, hence making C. intybus a potentially useful source for novel anthelmintic compounds or a diet-based preventive/therapeutic option. Here, we utilized in vitro bioassays with the parasitic nematode Ascaris suum and molecular networking techniques with five chicory cultivars to identify putative active compounds. Network analysis predicted sesquiterpene lactones (SL) as the most likely group of anthelmintic compounds. Further bioassay-guided fractionation supported these predictions, and isolation of pure compounds demonstrated that the SL 8-deoxylactucin (8-DOL) is the compound most strongly associated with anti-parasitic activity. Furthermore, we showed that 8-DOL acts in a synergistic combination with other SL to exert the anti-parasitic effects. Finally, we established that chicory-derived extracts also showed activity against two ruminant nematodes (Teladorsagia circumcincta and Cooperia oncophora) in in vitro assays. Collectively, our results confirm the anti-parasitic activity of chicory against a range of nematodes, and pave the way for targeted extraction of active compounds or selective breeding of specific cultivars to optimize its future use in human and veterinary medicine.


Assuntos
Anti-Helmínticos , Ascaris suum , Cichorium intybus , Nematoides , Animais , Anti-Helmínticos/farmacologia , Humanos , Ostertagia
6.
Vet Parasitol ; 280: 109088, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32278938

RESUMO

Chicory (Cichorium intybus) is a bioactive forage rich in sesquiterpene lactones (SLs) with reported in vitro and in vivo anthelmintic activity in livestock. However, the on-farm adoption of chicory as an anthelmintic crop is limited and may be facilitated by using standardised industrial chicory material. Chicory root pulp is a by-product obtained from industrial chicory roots after inulin extraction and can potentially retain SLs. However, SL content and associated anthelmintic activity of chicory root pulp have not been investigated. Here, we evaluated the anthelmintic activity of SL-enriched extracts from chicory root pulp and forage chicory, and used untargeted metabolomics and molecular networking to identify potential anthelmintic molecules. Six different sources of chicory material were used: fresh chicory root pulp (from industrial chicory roots C. intybus var. sativum; "Root Pulp"), fresh leaves from chicory cv. Spadona (sampled on four occasions) and fresh leaves from chicory cv. Choice. The resulting extracts were tested for anthelmintic activity against the free-living nematode Caenorhabditis elegans and the pig nematode Ascaris suum. The cytotoxicity of the chicory extracts was evaluated on mammalian (Vero) cells. In the C. elegans assays, the Root Pulp was the most potent extract and induced paralysis in >95% of worms exposed to >250  µg extract/mL (EC50 = 64.2 µg/mL). In the A. suum assays, the Root Pulp was also the most potent chicory extract to inhibit worm motility (EC50 = 87.6  µg/mL), followed closely by two of the Spadona leaf extracts (EC50 = 89.8  µg/mL and 112.2  µg/mL) The Root Pulp extract had the lowest cytotoxicity of all tested extracts towards mammalian cells, with a selectivity index of 5.37. Untargeted metabolomics revealed that chicory Root Pulp had a markedly different chemical profile in comparison with forage chicory extracts. Molecular networking confirmed several SLs and SL-derivatives mainly present in chicory root pulp, that may be responsible of its potent anti-parasitic activity. Bioactivity-based molecular networking of chicory root pulp and the most potent forage chicory extracts revealed a high predicted anthelmintic score for the guaianolide SL 11,13-dihydro-lactucopicrin. In conclusion, chicory root pulp showed potent and selective in vitro anthelmintic activity against C. elegans and A. suum, with low cytotoxicity in mammalian cells. The promising anthelmintic activity of chicory root pulp should be confirmed in vivo to further explore the potential of this agro-industrial by-product as a nutraceutical anthelmintic for livestock and as novel source of anti-parasitic compounds.


Assuntos
Antinematódeos/farmacologia , Ascaris suum/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Cichorium intybus/química , Resíduos Industriais/análise , Metaboloma , Animais , Chlorocebus aethiops , Metabolômica , Células Vero
7.
Front Microbiol ; 9: 1961, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186271

RESUMO

Pathogenic trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp.) are protozoan parasites that cause neglected diseases affecting millions of people in Africa, Asia, and the Americas. In the process of infection, trypanosomatids evade and survive the immune system attack, which can lead to a chronic inflammatory state that induces cumulative damage, often killing the host in the long term. The immune mediators involved in this process are not entirely understood. Most of the research on the immunologic control of protozoan infections has been focused on acute inflammation. Nevertheless, when this process is not terminated adequately, permanent damage to the inflamed tissue may ensue. Recently, a second process, called resolution of inflammation, has been proposed to be a pivotal process in the control of parasite burden and establishment of chronic infection. Resolution of inflammation is an active process that promotes the normal function of injured or infected tissues. Several mediators are involved in this process, including eicosanoid-derived lipids, cytokines such as transforming growth factor (TGF)-ß and interleukin (IL)-10, and other proteins such as Annexin-V. For example, during T. cruzi infection, pro-resolving lipids such as 15-epi-lipoxin-A4 and Resolvin D1 have been associated with a decrease in the inflammatory changes observed in experimental chronic heart disease, reducing inflammation and fibrosis, and increasing host survival. Furthermore, Resolvin D1 modulates the immune response in cells of patients with Chagas disease. In Leishmania spp. infections, pro-resolving mediators such as Annexin-V, lipoxins, and Resolvin D1 are related to the modulation of cutaneous manifestation of the disease. However, these mediators seem to have different roles in visceral or cutaneous leishmaniasis. Finally, although T. brucei infections are less well studied in terms of their relationship with inflammation, it has been found that arachidonic acid-derived lipids act as key regulators of the host immune response and parasite burden. Also, cytokines such as IL-10 and TGF-ß may be related to increased infection. Knowledge about the inflammation resolution process is necessary to understand the host-parasite interplay, but it also offers an interesting opportunity to improve the current therapies, aiming to reduce the detrimental state induced by chronic protozoan infections.

8.
Parasit Vectors ; 11(1): 475, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134991

RESUMO

Increasing drug resistance in gastrointestinal (GI) parasites of livestock and concerns about chemical residues in animal products and the environment are driving the development of alternative control strategies that are less reliant on the use of synthetic drugs. An increasingly investigated approach is the use of bioactive forages with antiparasitic properties as part of the animal's diet (nutraceuticals) or as potential sources of novel, natural parasiticides. Chicory (Cichorium intybus) is a multi-purpose crop and one of the most promising bioactive forages in temperate regions, and numerous in vivo trials have explored its potential against parasitic nematodes in livestock. However, it is unclear whether chicory can induce a direct and broad activity against various GI parasites in different livestock species, and the levels of chicory in the diet that are required to exert an efficient antiparasitic effect. Moreover, the mechanisms leading to the reported parasiticidal activity of chicory are still largely unknown, and its bioactive phytochemicals have only recently been investigated. In this review, we summarise the progress in the study of the antiparasitic activity of chicory and its natural bioactive compounds against GI parasites in livestock, through examination of the published literature. The available evidence indicates that feeding chicory can reduce faecal egg counts and/or worm burdens of abomasal nematodes, but not infections with intestinal worms, in ruminants. Highly chicory-rich diets (≥ 70% of chicory dry matter in the diet) may be necessary to directly affect abomasal parasitism. Chicory is known to synthesise several bioactive compounds with potential antiparasitic activity, but most research has been devoted to the role of sesquiterpene lactones (SL). Recent in vitro studies have confirmed direct and potent activity of SL-rich extracts from chicory against different GI helminths of livestock. Chicory SL have also been reported to exhibit antimalarial properties and its potential antiprotozoal activity in livestock remains to be evaluated. Furthermore, the detailed identification of the main antiparasitic metabolites of chicory and their pharmacokinetics need further confirmation. Research gaps and perspectives on the potential use of chicory as a nutraceutical forage and a source of bioactive compounds for parasite control in livestock are discussed.


Assuntos
Ração Animal/análise , Antiparasitários/administração & dosagem , Cichorium intybus/química , Suplementos Nutricionais , Nematoides/efeitos dos fármacos , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/química , Antiparasitários/química , Bovinos , Fezes/parasitologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/parasitologia , Helmintíase/tratamento farmacológico , Humanos , Enteropatias Parasitárias/tratamento farmacológico , Gado/anatomia & histologia , Gado/parasitologia , Contagem de Ovos de Parasitas , Ovinos
9.
Vet Parasitol ; 243: 204-207, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28807295

RESUMO

Chicory shows great promise as an anthelmintic forage for grazing ruminants that can reduce reliance on anti-parasitic drugs. Recently, we reported potent anthelmintic effects of chicory-based diets in infected cattle with significant reductions in worm burdens of the abomasal nematode Ostertagia ostertagi, whilst no apparent activity was observed against the small intestinal parasite Cooperia oncophora. To explore this discrepancy, we investigated direct anthelmintic effects of forage chicory against C. oncophora in vitro. Chicory leaves (cultivar 'Spadona') were extracted with methanol in a Soxhlet apparatus and the resulting extract was purified by solid-phase extraction to concentrate bioactive phytochemicals such as sesquiterpene lactones. C. oncophora eggs and adult worms from mono-infected donor calves were exposed to decreasing concentrations of the chicory extract. In an egg hatch assay, the chicory extract induced a marked and dose-dependent inhibition of egg hatching, with 95% inhibition at 2500µg extract/mL (EC50=619 [95% CI: 530-722] µg extract/mL). In the adult motility inhibition assays, the chicory extract induced a potent and dose-dependent worm paralysis. At 12h of incubation, worms exposed to chicory showed a total paralysis at ≥500µg extract/mL, while after 48h of incubation a complete inhibition of worm motility was observed at ≥250µg extract/mL (EC50=80 [95% CI: 67-95] µg extract/mL). We have demonstrated that forage chicory can induce potent inhibitory effects on the egg hatching and exert direct anthelmintic activity against parasitic stages of C. oncophora. These results suggest that the previously reported absence of in vivo effects of chicory towards C. oncophora in infected animals may be related with host-mediated factors and/or inhibitory digestive conditions, rather than an inherent inactivity of chicory and its bioactive phytochemicals.


Assuntos
Ração Animal/análise , Anti-Helmínticos/farmacologia , Cichorium intybus/química , Nematoides/efeitos dos fármacos , Infecções por Nematoides/veterinária , Animais , Anti-Helmínticos/química , Bioensaio , Atividade Motora/efeitos dos fármacos , Infecções por Nematoides/prevenção & controle , Óvulo/efeitos dos fármacos
10.
Int J Parasitol Drugs Drug Resist ; 6(3): 241-250, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27835769

RESUMO

The efficacy of ivermectin (IVM) against gastrointestinal nematodes in Danish cattle was assessed by faecal egg count reduction test (FECRT). Six cattle farms with history of clinical parasitism and avermectin use were included. On the day of treatment (Day 0), 20 naturally infected calves per farm (total n = 120) were stratified by initial faecal egg counts (FEC) and randomly allocated to a treatment group dosed with 0.2 mg IVM kg-1 body weight s.c. (IVM; n = 10) or an untreated control group (CTL; n = 10). Individual FEC were obtained at Day 0 and Day 14 post-treatment and pooled faeces by group were cultured to isolate L3 for detection of Ostertagia ostertagi and Cooperia oncophora by qPCR. Treatment efficacies were analysed using the recommended WAAVP method and two open-source statistical procedures based on Bayesian modelling: 'eggCounts' and 'Bayescount'. A simulation study evaluated the performance of the different procedures to correctly identify FEC reduction percentages of simulated bovine FEC data representing the observed real data. In the FECRT, reduced IVM efficacy was detected in three farms by all procedures using data from treated animals only, and in one farm according to the procedures including data from treated and untreated cattle. Post-treatment, O. ostertagi and C. oncophora L3 were detected by qPCR in faeces of treated animals from one and three herds with declared reduced IVM efficacy, respectively. Based on the simulation study, all methods showed a reduced performance when FEC aggregation increased post-treatment and suggested that a treatment group of 10 animals is insufficient for the FECRT in cattle. This is the first report of reduced anthelmintic efficacy in Danish cattle and warrants the implementation of larger surveys. Advantages and caveats regarding the use of Bayesian modelling and the relevance of including untreated cattle in the FECRT are discussed.


Assuntos
Antiparasitários/farmacologia , Resistência a Medicamentos , Ivermectina/farmacologia , Ostertagia/efeitos dos fármacos , Contagem de Ovos de Parasitas , Trichostrongyloidea/efeitos dos fármacos , Animais , Antiparasitários/administração & dosagem , Bovinos , Dinamarca , Fezes/parasitologia , Enteropatias Parasitárias/tratamento farmacológico , Enteropatias Parasitárias/parasitologia , Ivermectina/administração & dosagem , Ostertagia/genética , Ostertagia/isolamento & purificação , Doenças Parasitárias em Animais/tratamento farmacológico , Doenças Parasitárias em Animais/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Trichostrongyloidea/genética , Trichostrongyloidea/isolamento & purificação
11.
Parasit Vectors ; 9(1): 329, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283323

RESUMO

BACKGROUND: Increasing anthelmintic-resistance in nematodes of ruminants emphasises the need for sustainable parasite control. Condensed tannin-containing legume forages such as sainfoin (Onobrychis viciifolia) have shown promising anthelmintic properties in small ruminants but this has never been explored in cattle. Therefore, our aim was to examine the efficacy of sainfoin against cattle nematodes in vivo. METHODS: Fifteen Jersey male calves (2-4 month-old) were allocated into two groups and fed isoproteic and isoenergetic diets mainly composed of sainfoin pellets (Group SF; n = 9, three pens) or concentrate and grass-clover hay (Group CO; n = 6, two pens). After 16 days of adaptation, all animals were experimentally infected with 10,000 and 66,000 third-stage larvae of Ostertagia ostertagi and Cooperia oncophora, respectively. Egg excretion, blood parameters and bodyweights were recorded throughout the study. Worms were harvested by sieving for quantification and scanning electron microscopy (SEM) 42 days post-infection (dpi) when the calves were necropsied. RESULTS: The number of O. ostertagi adults in the abomasum was reduced by 50 % in Group SF compared with Group CO (P < 0.05). This was further reflected in higher albumin (P < 0.1) and lower pepsinogen levels (P < 0.05) in Group SF at 21 dpi, and structural damage of the worm cuticle could be visualised by SEM. Yet, the nematode egg excretion in Group SF was not significantly different from that of the controls (P > 0.05). Likewise, no statistical difference in total worm burdens of C. oncophora was found between the groups. Weight gains were lower for Group SF (P < 0.05), which may reflect lower digestibility and phosphorus levels in the SF diet, despite similar feed intake at pen-level. CONCLUSIONS: Overall, the effect of sainfoin on abomasal nematodes corroborates results from studies with small ruminants and encourages further investigations of the use of this crop for control of cattle nematodes.


Assuntos
Anti-Helmínticos/uso terapêutico , Doenças dos Bovinos/tratamento farmacológico , Fabaceae/química , Ostertagíase/veterinária , Trichostrongyloidea , Tricostrongiloidíase/veterinária , Animais , Anti-Helmínticos/química , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/parasitologia , Masculino , Ostertagíase/sangue , Ostertagíase/tratamento farmacológico , Contagem de Ovos de Parasitas/veterinária , Fitoterapia , Plantas Medicinais , Tricostrongiloidíase/sangue , Tricostrongiloidíase/tratamento farmacológico , Tricostrongiloidíase/parasitologia
12.
Parasitology ; 143(10): 1279-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27173405

RESUMO

Two experiments studied the effects of dietary chicory against gastrointestinal nematodes in cattle. In Experiment (Exp.) 1, stabled calves were fed chicory silage (CHI1; n = 9) or ryegrass/clover hay (CTL1; n = 6) with balanced protein/energy intakes between groups. After 16 days, all calves received 10 000 Ostertagia ostertagi and 66 000 Cooperia oncophora third-stage larvae (L3) [day (D) 0 post-infection (p.i.)]. In Exp. 2, calves were assigned to pure chicory (CHI2; n=10) or ryegrass/clover (CTL2; n = 10) pastures. After 7 days, animals received 20 000 O. ostertagi L3/calf (D0 p.i.) and were moved regularly preventing pasture-borne infections. Due to poor regrowth of the chicory pasture, CHI2 was supplemented with chicory silage. At D40 p.i. (Exp. 1) and D35 p.i. (Exp. 2) calves were slaughtered for worm recovery. In Exp.1, fecal egg counts (FEC) were similar between groups. However, O. ostertagi counts were significantly reduced in CHI1 by 60% (geometric mean; P < 0·01), whereas C. oncophora burdens were unaffected (P = 0·12). In Exp. 2, FEC were markedly lowered in CHI2 from D22 p.i onwards (P < 0·01). Ostertagia ostertagi adult burdens were significantly reduced in CHI2 by 66% (P < 0·001). Sesquiterpene lactones were identified only in chicory (fresh/silage). Chicory shows promise as an anti-Ostertagia feed for cattle and further studies should investigate its on-farm use.


Assuntos
Ração Animal , Doenças dos Bovinos/terapia , Cichorium intybus , Enteropatias Parasitárias/veterinária , Infecções por Nematoides/veterinária , Ostertagia/fisiologia , Ração Animal/análise , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Fezes/parasitologia , Enteropatias Parasitárias/parasitologia , Enteropatias Parasitárias/terapia , Lolium , Nematoides/fisiologia , Infecções por Nematoides/parasitologia , Infecções por Nematoides/terapia , Ostertagia/efeitos dos fármacos , Ostertagia/crescimento & desenvolvimento , Contagem de Ovos de Parasitas/veterinária , Sesquiterpenos/isolamento & purificação
13.
Parasitology ; 143(6): 770-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26935644

RESUMO

Chicory is a perennial crop that has been investigated as a forage source for outdoor-reared ruminants and pigs, and has been reported to have anthelmintic properties. Here, we investigated in vitro anthelmintic effects of forage chicory-extracts against the highly prevalent swine parasites Ascaris suum and Oesophagostomum dentatum. Methanol extracts were prepared and purified from two different cultivars of chicory (Spadona and Puna II). Marked differences were observed between the anthelmintic activity of extracts from the two cultivars. Spadona extracts had potent activity against A. suum third (L3) and fourth (L4) - stage larvae, as well as O. dentatum L4 and adults, whereas Puna II extracts had less activity against A. suum and no activity towards O. dentatum L4. Transmission-electron microscopy of A. suum L4 exposed to Spadona extracts revealed only subtle changes, perhaps indicative of a specific anthelmintic effect rather than generalized toxicity. Ultra-high liquid chromatography-mass spectrometry analysis revealed that the purified extracts were rich in sesquiterpene lactones (SL), and that the SL profile differed significantly between cultivars. This is the first report of anthelmintic activity of forage chicory towards swine nematodes. Our results indicate a significant anthelmintic effect, which may possibly be related to SL composition.


Assuntos
Ascaris suum/efeitos dos fármacos , Cichorium intybus/química , Oesophagostomum/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Anti-Helmínticos/química , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/farmacologia , Ascaris suum/ultraestrutura , Larva/efeitos dos fármacos , Larva/ultraestrutura , Microscopia Eletrônica de Transmissão , Oesophagostomum/ultraestrutura , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Suínos/parasitologia
14.
Int J Parasitol Drugs Drug Resist ; 5(3): 191-200, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-27120066

RESUMO

The study investigated direct anthelmintic effects of sesquiterpene lactones (SL)-containing extracts from forage chicory against free-living and parasitic stages of Ostertagia ostertagi. Freeze-dried leaves from chicory cultivars 'Spadona' and 'Puna II' were extracted using methanol/water. Total SL were further fractionated by solid-phase extraction and resulting extracts were characterised by high-performance liquid chromatography (HPLC). O. ostertagi eggs from faeces of mono-infected calves were hatched and L1 were used in a larval feeding inhibition assay (LFIA), while cultured L3 were used in a larval exsheathment inhibition assay (LEIA). Adult worms were immediately recovered after slaughter and used for motility inhibition assays (AMIA). Electron microscopy (EM) was performed on adult O. ostertagi exposed to 1000 µg extract mL(-1) of both chicory cultivars. In all assays, decreasing concentrations of SL-containing extracts in PBS (1% DMSO) were tested in replicates with 1% DMSO in PBS as negative controls. HPLC demonstrated similar concentrations of most SL in both extracts. However, Spadona-extract contained significantly higher concentrations of 11, 13-dihydro-8-deoxylactucin (P = 0.01), while Puna II-extract had increased levels of 11, 13-dihydrolactucin (P < 0.0001). In the LFIA, both extracts reduced larval feeding at increasing concentrations, but Spadona-extract showed higher potency confirmed by significantly lower EC50 (P < 0.0001). In the LEIA, neither of the two extracts interfered with the exsheathment of L3 (P > 0.05). In the AMIA, both SL-containing extracts induced a dose-dependent effect but Spadona-extract showed greater activity and exerted faster worm paralysis than Puna II-extract with significantly lower EC50 (P < 0.0001). No cuticular damage was observed by EM in worms exposed to any of the extracts. We have demonstrated that SL-containing extracts from forage chicory can inhibit feeding of free-living larvae and exert direct effects against parasitic stages of O. ostertagi. Our results may contribute to the identification of natural anti-parasitic compounds and to interpret the in vivo anthelmintic effects of forage chicory.


Assuntos
Anti-Helmínticos/farmacologia , Cichorium intybus/química , Lactonas/farmacologia , Ostertagia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Animais , Anti-Helmínticos/química , Lactonas/química , Extratos Vegetais/química , Sesquiterpenos/química
15.
Vet Parasitol ; 206(3-4): 208-15, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25468020

RESUMO

We describe a case of anthelmintic resistance on one of the largest organic small ruminant farms in Denmark. The flock was established in 2007 by purchase of animals from other Danish farms and had history of clinical parasitism, high mortality of young stock and anthelmintic treatment failure. In October 2011, 40 lambs and 40 kids were selected for a faecal egg count reduction test (FECRT) with fenbendazole (FBZ), ivermectin (IVM), moxidectin (MOX) and levamisole (LEV). Lambs were treated with the recommended sheep dose of each product while kids received the sheep dose of IVM, 1.5× sheep dose of MOX and 2× sheep dose of FBZ and LEV. Untreated lambs and kids were also included and three methods for calculating faecal egg count (FEC) reduction were compared. In a subsequent investigation, a controlled efficacy test (CET) with FBZ and IVM was performed in lambs infected with Haemonchus contortus and Trichostrongylus colubriformis isolated from adult goats on the farm. Recovered specimens of H. contortus were subjected to pyrosequencing for detection of single nucleotide polymorphisms (SNPs) related to benzimidazole (BZ) resistance. During the FECRT, FECs in untreated lambs dropped significantly by 47%. No FEC reduction was detected in untreated kids. After FBZ treatments, FEC reductions in lambs and kids ranged from 15 to 54% and 49-56%, respectively, according to the different calculation methods. Post IVM treatments, FEC reductions in lambs and kids varied between 71-90% and 81-83%, correspondingly. LEV and MOX reduced FECs by 98-100% in both species. In the CET, FBZ reduced H. contortus worm counts by 52-56% and no reduction in T. colubriformis counts were detected after treatment. IVM eliminated 100% of H. contortus and reduced T. colubriformis counts by 84-92%, according to different calculation methods. Pyrosequencing of isolated H. contortus revealed increased frequencies of the BZ resistance-related SNP in codon 200 of the ß-tubulin isotype 1 gene. Frequency of BZ resistance-related SNPs in codons 167 and 198 were very low and did not exceed levels as obtained in the susceptible reference isolate. Anthelmintic resistance was confirmed in this recently established organic farm and low field efficacy of FBZ was verified by CET and pyrosequencing. BZ-resistant populations of H. contortus and T. colubriformis were isolated for the first time in Denmark. Problems with correct dosing of goats, the observed FEC reduction in untreated lambs and the relevance of including a control group in the FECRT are discussed.


Assuntos
Anti-Helmínticos/uso terapêutico , Doenças das Cabras/tratamento farmacológico , Hemoncose/veterinária , Haemonchus/efeitos dos fármacos , Doenças dos Ovinos/tratamento farmacológico , Tricostrongilose/veterinária , Trichostrongylus/efeitos dos fármacos , Animais , Benzimidazóis/uso terapêutico , Dinamarca , Resistência a Medicamentos , Feminino , Fenbendazol/uso terapêutico , Cabras , Hemoncose/tratamento farmacológico , Ivermectina/uso terapêutico , Levamisol/uso terapêutico , Macrolídeos/uso terapêutico , Masculino , Contagem de Ovos de Parasitas/veterinária , Análise de Sequência de DNA , Ovinos , Tricostrongilose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA