Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PeerJ ; 8: e8952, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351783

RESUMO

Reprogramming somatic cells to induced pluripotent stem cells (iPSC) succeeds only in a small fraction of cells within the population. Reprogramming occurs in distinctive stages, each facing its own bottlenecks. It initiates with overexpression of transcription factors OCT4, SOX2, KLF4 and c-MYC (OSKM) in somatic cells such as mouse embryonic fibroblasts (MEFs). OSKM bind chromatin, silencing the somatic identity and starting the stepwise reactivation of the pluripotency programme. However, inefficient suppression of the somatic lineage leads to unwanted epigenetic memory from the tissue of origin, even in successfully generated iPSCs. Thus, it is essential to shed more light on chromatin regulators and processes involved in dissolving the somatic identity. Recent work characterised the role of transcriptional corepressors NCOR1 and NCOR2 (also known as NCoR and SMRT), showing that they cooperate with c-MYC to silence pluripotency genes during late reprogramming stages. NCOR1/NCOR2 were also proposed to be involved in silencing fibroblast identity, however it is unclear how this happens. Here, we shed light on the role of NCOR1 in early reprogramming. We show that siRNA-mediated ablation of NCOR1 and OCT4 results in very similar phenotypes, including transcriptomic changes and highly correlated high-content colony phenotypes. Both NCOR1 and OCT4 bind to promoters co-occupied by c-MYC in MEFs. During early reprogramming, downregulation of one group of somatic MEF-expressed genes requires both NCOR1 and OCT4, whereas another group of MEF-expressed genes is downregulated by NCOR1 but not OCT4. Our data suggest that NCOR1, assisted by OCT4 and c-MYC, facilitates transcriptional repression of genes with high expression in MEFs, which is necessary to bypass an early reprogramming block; this way, NCOR1 facilitates early reprogramming progression.

2.
Biochim Biophys Acta Gene Regul Mech ; 1862(9): 194407, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31356991

RESUMO

Reprogramming to induced pluripotency through expression of OCT4, SOX2, KLF4, MYC (OSKM) factors is often considered the dedifferentiation of somatic cells. This would suggest that reprogramming represents the reversal of embryonic differentiation. Indeed, molecular events involving the activity of the pluripotency network occur in opposite directions. However, reprogramming and development substantially differ as OSKM bind to accessible regulatory elements in the genome of somatic cells due to their overexpression, including regulatory elements never bound by these factors during normal differentiation. In addition, rewiring the transcriptional network back to pluripotency involves overcoming molecular barriers that protect or stabilize the somatic identity, whereas extrinsic and intrinsic cues will drive differentiation in an energetically favorable landscape in the embryo. This review focuses on how cell fate transitions in reprogramming and development are differentially governed by interactions between transcription factors and chromatin. We also discuss how these interactions shape chromatin architecture and the transcriptional output. Major technological advances have resulted in a better understanding of both differentiation and reprogramming, which is essential to exploit reprogramming regimes for regenerative medicine.


Assuntos
Linhagem da Célula/genética , Reprogramação Celular/genética , Cromatina/genética , Fatores de Transcrição/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição SOXB1/genética
3.
Stem Cell Reports ; 12(4): 743-756, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30880078

RESUMO

Differentiated cells are epigenetically stable, but can be reprogrammed to pluripotency by expression of the OSKM transcription factors. Despite significant effort, relatively little is known about the cellular requirements for reprogramming and how they affect the properties of induced pluripotent stem cells. We have performed high-content screening with small interfering RNAs targeting 300 chromatin-associated factors and extracted colony-level quantitative features. This revealed five morphological phenotypes in early reprogramming, including one displaying large round colonies exhibiting an early block of reprogramming. Using RNA sequencing, we identified transcriptional changes associated with these phenotypes. Furthermore, double knockdown epistasis experiments revealed that BRCA1, BARD1, and WDR5 functionally interact and are required for the DNA damage response. In addition, the mesenchymal-to-epithelial transition is affected in Brca1, Bard1, and Wdr5 knockdowns. Our data provide a resource of chromatin-associated factors in early reprogramming and underline colony morphology as an important high-dimensional readout for reprogramming quality.


Assuntos
Proteína BRCA1/genética , Reprogramação Celular/genética , Dano ao DNA , Transição Epitelial-Mesenquimal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteína BRCA1/metabolismo , Cromatina/genética , Cromatina/metabolismo , Reparo do DNA , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Fenótipo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
PLoS One ; 7(9): e45702, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049841

RESUMO

BACKGROUND: Gene duplication and the subsequent divergence of paralogous pairs play a central role in the evolution of novel gene functions. S. cerevisiae possesses two paralogous genes (ALT1/ALT2) which presumably encode alanine aminotransferases. It has been previously shown that Alt1 encodes an alanine aminotransferase, involved in alanine metabolism; however the physiological role of Alt2 is not known. Here we investigate whether ALT2 encodes an active alanine aminotransferase. PRINCIPAL FINDINGS: Our results show that although ALT1 and ALT2 encode 65% identical proteins, only Alt1 displays alanine aminotransferase activity; in contrast ALT2 encodes a catalytically inert protein. ALT1 and ALT2 expression is modulated by Nrg1 and by the intracellular alanine pool. ALT1 is alanine-induced showing a regulatory profile of a gene encoding an enzyme involved in amino acid catabolism, in agreement with the fact that Alt1 is the sole pathway for alanine catabolism present in S. cerevisiae. Conversely, ALT2 expression is alanine-repressed, indicating a role in alanine biosynthesis, although the encoded-protein has no alanine aminotransferase enzymatic activity. In the ancestral-like yeast L. kluyveri, the alanine aminotransferase activity was higher in the presence of alanine than in the presence of ammonium, suggesting that as for ALT1, LkALT1 expression could be alanine-induced. ALT2 retention poses the questions of whether the encoded protein plays a particular function, and if this function was present in the ancestral gene. It could be hypotesized that ALT2 diverged after duplication, through neo-functionalization or that ALT2 function was present in the ancestral gene, with a yet undiscovered function. CONCLUSIONS: ALT1 and ALT2 divergence has resulted in delegation of alanine aminotransferase activity to Alt1. These genes display opposed regulatory profiles: ALT1 is alanine-induced, while ALT2 is alanine repressed. Both genes are negatively regulated by the Nrg1 repressor. Presented results indicate that alanine could act as ALT2 Nrg1-co-repressor.


Assuntos
Alanina Transaminase/química , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/enzimologia , Alanina/química , Catálise , Sistema Livre de Células , Proteínas Correpressoras , Ativação Enzimática , Evolução Molecular , Glucose/química , Modelos Biológicos , Modelos Químicos , Oligonucleotídeos/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA