Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 15(1): 1, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049488

RESUMO

BACKGROUND: Nanotechnology is a science that involves imaging, measurement, modeling and a manipulation of matter at the nanometric scale. One application of this technology is drug delivery systems based on nanoparticles obtained from natural or synthetic sources. An example of these systems is synthetized from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which is a biodegradable, biocompatible and a low production cost polymer. The aim of this work was to investigate the uptake mechanism of PHBV nanoparticles in two different epithelial cell lines (HeLa and SKOV-3). RESULTS: As a first step, we characterized size, shape and surface charge of nanoparticles using dynamic light scattering and transmission electron microscopy. Intracellular incorporation was evaluated through flow cytometry and fluorescence microscopy using intracellular markers. We concluded that cellular uptake mechanism is carried out in a time, concentration and energy dependent way. Our results showed that nanoparticle uptake displays a cell-specific pattern, since we have observed different colocalization in two different cell lines. In HeLa (Cervical cancer cells) this process may occur via classical endocytosis pathway and some internalization via caveolin-dependent was also observed, whereas in SKOV-3 (Ovarian cancer cells) these patterns were not observed. Rearrangement of actin filaments showed differential nanoparticle internalization patterns for HeLa and SKOV-3. Additionally, final fate of nanoparticles was also determined, showing that in both cell lines, nanoparticles ended up in lysosomes but at different times, where they are finally degraded, thereby releasing their contents. CONCLUSIONS: Our results, provide novel insight about PHBV nanoparticles internalization suggesting that for develop a proper drug delivery system is critical understand the uptake mechanism.


Assuntos
Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Poliésteres/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Endocitose , Células HeLa , Humanos , Nanopartículas/ultraestrutura
2.
Curr Pharm Biotechnol ; 15(9): 864-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25213311

RESUMO

Recent advances in nanotechnology and nanobiotechnology have contributed to the development of nanomaterials, able to be used as drug carriers, probes, targets or cytostatic drugs by itself. Nanomedicine is now the leading area in nanotechnology where a large number and types of nanoparticles (NPs) has been developed and several are already in the clinical practice. Chemotherapy is one of the most widely used strategies to treat cancer. Most chemotherapeutic agents have poor solubility, low bioavailability, and are formulated with toxic solvents. NPs have been designed to overcome the lack of specificity of chemotherapeutic agents as well to improve circulation time in blood, taking advantages on tumor cells characteristics. In immunology, recent advances regarding the activation of the innate immune system artificially enhanced by NPs functionalized with immune-stimulators open a new window as novel methods in vaccines. Also, viruses and virus-like particles (VLPs) engineered to stimulate immune response against their similar virus or as molecular platforms for the presentation of foreign epitopes have been described. In this review we focused in the use of different types of NPs in oncology and immunology, pinpointing the main novelties regarding their development and use of nanotechnology in a broad array of applications, ranging from tumor diagnostics, immune-modulation up to cancer therapeutics.


Assuntos
Antineoplásicos , Fatores Imunológicos , Nanopartículas , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Dendrímeros/química , Grafite/química , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/química , Fatores Imunológicos/uso terapêutico , Lipossomos , Nanomedicina , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanotubos de Carbono/química , Neoplasias/tratamento farmacológico , Dióxido de Silício/química
3.
Fundam Clin Pharmacol ; 28(6): 593-607, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24750474

RESUMO

Since its discovery, cAMP has been proposed as one of the most versatile second messengers. The remarkable feature of cAMP to tightly control highly diverse physiological processes, including metabolism, homeostasis, secretion, muscle contraction, cell proliferation and migration, immune response, and gene transcription, is reflected by millions of different articles worldwide. Compartmentalization of cAMP in space and time, maintained by mainly phosphodiesterases, contributes to the maintenance of equilibrium inside the cell where one signal can trigger many different events. Novel cAMP sensors seem to carry out certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Measuring space and time events with biosensors will increase our current knowledge on the pathophysiology of diseases, such as chronic obstructive pulmonary disease, asthma, cognitive impairment, cancer, and renal and heart failure. Further insights into the cAMP dynamics will help to optimize the pharmacological treatment for these diseases.


Assuntos
AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais/fisiologia , Animais , Técnicas Biossensoriais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA