Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Bioorg Med Chem Lett ; 110: 129875, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964520

RESUMO

Eupenifeldin (1) is a fungal secondary metabolite possessing bis-tropolone moieties that demonstrates nanomolar cytotoxic activity against a number of cancer cell types. As a potential anticancer lead, this meroterpenoid was used to access 29 semisynthetic analogues via functionalization of the reactive hydroxy groups of the bis-tropolones. A series of ester (2-6), carbonate (7-8), sulfonate (9-16), carbamate (17-20), and ether (21-30) analogues of 1 were generated via 22 reactions. Most of these compounds were disubstituted, produced via functionalization of both of the tropolonic hydroxy moieties, although three mono-functionalized analogues (6, 8, and 24) and one tri-functionalized analogue (3) were also obtained. The cytotoxic activities of 1-30 were evaluated against human melanoma and ovarian cancer cell lines (i.e., MDA-MB-435 and OVCAR3, respectively). Ester and carbonate analogues of 1 (i.e., 2-8) maintained cytotoxicity at the nanomolar level, and the greatest improvement in aqueous solubility came from the monosuccinate analogue (6), which was acylated on the secondary hydroxy at the 11 position.

2.
Nat Prod Rep ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629495

RESUMO

Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their in vivo activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species. Verticillin A (1) was the first of 27 analogues reported from fungal cultures since 1970. Subsequent genome sequencing identified the biosynthetic gene cluster responsible for producing verticillins, allowing a putative pathway to be proposed. Further, molecular sequencing played a pivotal role in clarifying the taxonomic characterization of verticillin-producing fungi, suggesting that most producing strains belong to the genus Clonostachys (i.e., Bionectria), Bionectriaceae. Recent studies have explored the total synthesis of these molecules and the generation of analogues via both semisynthetic and precursor-directed biosynthetic approaches. In addition, nanoparticles have been used to deliver these molecules, which, like many natural products, possess challenging solubility profiles. This review summarizes over 50 years of chemical and biological research on this class of fungal metabolites and offers insights and suggestions on future opportunities to push these compounds into pre-clinical and clinical development.

3.
Tetrahedron Lett ; 1342024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38328000

RESUMO

Diepoxin-η (1) is a cytotoxic fungal metabolite belonging to the spirobisnaphthalene structural class. In this study, four mono fluorinated analogues (2-5) of diepoxin-η (1) were semisynthesized in a single-step by selectively fluorinating the naphthalene moiety with Selectfluor. The structures of 2-5 were elucidated using a set of spectroscopic and spectrometric techniques and were further confirmed by means of TDDFT-ECD and isotropic shielding tensors calculations. Compounds 2-5 showed equipotent cytotoxic activity to 1 when tested against OVCAR3 (ovarian) and MDA-MB-435 (melanoma) cancer cell lines with IC50 values that range from 5.7-8.2 µM.

4.
Exp Cell Res ; 435(1): 113907, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184222

RESUMO

Neosetophomone B (NSP-B) is a unique meroterpenoid fungal secondary metabolite that has previously demonstrated promising anti-cancer properties against various cancer cell lines in vitro. However, its in vivo anti-cancer potential remaines unexplored. To fill this gap in our knowledge, we tested NSP-B's in vivo anti-cancer activity using a zebrafish model, an organism that has gained significant traction in biomedical research due to its genetic similarities with humans and its transparent nature, allowing real-time tumor growth observation. For our experiments, we employed the K562-injected zebrafish xenograft model. Upon treating these zebrafish with NSP-B, we observed a marked reduction in the size and number of tumor xenografts. Delving deeper, our analyses indicated that NSP-B curtailed tumor growth and proliferation of leukemic grafted xenograft within the zebrafish. These results show that NSP-B possesses potent in vivo anti-cancer properties, making it a potential novel therapeutic agent for addressing hematological malignancies.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Xenoenxertos , Modelos Animais de Doenças , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Biol Int ; 48(2): 190-200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37885161

RESUMO

Multiple myeloma (MM) is a hematologic malignancy associated with malignant plasma cell proliferation in the bone marrow. Despite the available treatments, drug resistance and adverse side effects pose significant challenges, underscoring the need for alternative therapeutic strategies. Natural products, like the fungal metabolite neosetophomone B (NSP-B), have emerged as potential therapeutic agents due to their bioactive properties. Our study investigated NSP-B's antitumor effects on MM cell lines (U266 and RPMI8226) and the involved molecular mechanisms. NSP-B demonstrated significant growth inhibition and apoptotic induction, triggered by reduced AKT activation and downregulation of the inhibitors of apoptotic proteins and S-phase kinase protein. This was accompanied by an upregulation of p21Kip1 and p27Cip1 and an elevated Bax/BCL2 ratio, culminating in caspase-dependent apoptosis. Interestingly, NSP-B also enhanced the cytotoxicity of bortezomib (BTZ), an existing MM treatment. Overall, our findings demonstrated that NSP-B induces caspase-dependent apoptosis, increases cell damage, and suppresses MM cell proliferation while improving the cytotoxic impact of BTZ. These findings suggest that NSP-B can be used alone or in combination with other medicines to treat MM, highlighting its importance as a promising phytoconstituent in cancer therapy.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Apoptose , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bortezomib/farmacologia , Proliferação de Células
6.
J Dermatol Sci ; 112(2): 83-91, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37865581

RESUMO

BACKGROUND: Cutaneous T cell lymphoma (CTCL) is a T cell-derived non-Hodgkin lymphoma primarily affecting the skin, with treatment posing a significant challenge and low survival rates. OBJECTIVE: In this study, we investigated the anti-cancer potential of Neosetophomone B (NSP-B), a fungal-derived secondary metabolite, on CTCL cell lines H9 and HH. METHODS: Cell viability was measured using Cell counting Kit-8 (CCK8) assays. Apoptosis was measured by annexin V/PI dual staining. Immunoblotting was performed to examine the expression of proteins. Applied Biosystems' high-resolution Human Transcriptome Array 2.0 was used to examine gene expression. RESULTS: NSP-B induced apoptosis in CTCL cells by activating mitochondrial signaling pathways and caspases. We observed downregulated expression of BUB1B, Aurora Kinases A and B, cyclin-dependent kinases (CDKs) 4 and 6, and polo-like kinase 1 (PLK1) in NSP-B treated cells, which was further corroborated by Western blot analysis. Notably, higher expression levels of these genes showed reduced overall and progression-free survival in the CTCL patient cohort. FOXM1 and BUB1B expression exhibited a dose-dependent reduction in NSP-B-treated CTCL cells.FOXM1 silencing decreased cell viability and increased apoptosis via BUB1B downregulation. Moreover, NSP-B suppressed FOXM1-regulated genes, such as Aurora Kinases A and B, CDKs 4 and 6, and PLK1. The combined treatment of Bortezomib and NSP-B showed greater efficacy in reducing CTCL cell viability and promoting apoptosis compared to either treatment alone. CONCLUSION: Our findings suggest that targeting the FOXM1 pathway may provide a promising therapeutic strategy for CTCL management, with NSP-B offering significant potential as a novel treatment option.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Humanos , Apoptose , Aurora Quinase A/metabolismo , Aurora Quinase A/uso terapêutico , Linhagem Celular Tumoral , Proteína Forkhead Box M1/efeitos dos fármacos , Proteína Forkhead Box M1/metabolismo , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Terpenos/farmacologia , Terpenos/uso terapêutico
7.
J Antibiot (Tokyo) ; 76(11): 642-649, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37731043

RESUMO

As part of ongoing efforts to isolate biologically active fungal metabolites, a cyclic pentapeptide, sheptide A (1), was discovered from strain MSX53339 (Herpotrichiellaceae). The structure and sequence of 1 were determined primarily by analysis of 2D NMR and HRMS/MS data, while the absolute configuration was assigned using a modified version of Marfey's method. In an in vitro assay for antimalarial potency, 1 displayed a pEC50 value of 5.75 ± 0.49 against malaria-causing Plasmodium falciparum. Compound 1 was also tested in a counter screen for general cytotoxicity against human hepatocellular carcinoma (HepG2), yielding a pCC50 value of 5.01 ± 0.45 and indicating a selectivity factor of ~6. This makes 1 the third known cyclic pentapeptide biosynthesized by fungi with antimalarial activity.


Assuntos
Antimaláricos , Ascomicetos , Malária , Humanos , Antimaláricos/química , Malária/tratamento farmacológico , Plasmodium falciparum , Extratos Vegetais/química
8.
J Nat Prod ; 86(9): 2102-2110, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37643353

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most common and lethal ovarian cancer histotype. Lack of early detection methods, limited therapeutic agents, and low 5-year survival rate reflect the urgent need to develop new therapies. Eupenifeldin, a bistropolone, originally isolated from Eupenicillium brefeldianum, is a cytotoxic fungal metabolite. In three HSGOC cell lines (OVCAR3, OVCAR5, OVCAR8), eupenifeldin was found to have an IC50 value less than 10 nM, while 10 times higher concentrations were required for cytotoxicity in nontumorigenic fallopian tube secretory epithelial cell lines (FTSEC). An in vivo hollow fiber assay showed significant cytotoxicity in OVCAR3. Eupenifeldin significantly increased Annexin V staining in OVCAR3 and -8, but not OVCAR5. Eupenifeldin activated caspases 3/7 in OVCAR3, OVCAR5, and OVCAR8; however, cleaved PARP was only detected in OVCAR3. Quantitative proteomics performed on OVCAR3 implicated ferroptosis as the most enriched cell death pathway. However, validation experiments did not support ferroptosis as part of the cytotoxic mechanism of eupenifeldin. Autophagic flux and LC3B puncta assays found that eupenifeldin displayed weak autophagic induction in OVCAR3. Inhibition of autophagy by cotreatment with bafilomycin reduced the toxicity of eupenifeldin, supporting the idea that induction of autophagy contributes to the cytotoxic mechanism of eupenifeldin.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral
9.
Proc Natl Acad Sci U S A ; 120(25): e2219373120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37319116

RESUMO

Fungus-growing ants depend on a fungal mutualist that can fall prey to fungal pathogens. This mutualist is cultivated by these ants in structures called fungus gardens. Ants exhibit weeding behaviors that keep their fungus gardens healthy by physically removing compromised pieces. However, how ants detect diseases of their fungus gardens is unknown. Here, we applied the logic of Koch's postulates using environmental fungal community gene sequencing, fungal isolation, and laboratory infection experiments to establish that Trichoderma spp. can act as previously unrecognized pathogens of Trachymyrmex septentrionalis fungus gardens. Our environmental data showed that Trichoderma are the most abundant noncultivar fungi in wild T. septentrionalis fungus gardens. We further determined that metabolites produced by Trichoderma induce an ant weeding response that mirrors their response to live Trichoderma. Combining ant behavioral experiments with bioactivity-guided fractionation and statistical prioritization of metabolites in Trichoderma extracts demonstrated that T. septentrionalis ants weed in response to peptaibols, a specific class of secondary metabolites known to be produced by Trichoderma fungi. Similar assays conducted using purified peptaibols, including the two previously undescribed peptaibols trichokindins VIII and IX, suggested that weeding is likely induced by peptaibols as a class rather than by a single peptaibol metabolite. In addition to their presence in laboratory experiments, we detected peptaibols in wild fungus gardens. Our combination of environmental data and laboratory infection experiments strongly support that peptaibols act as chemical cues of Trichoderma pathogenesis in T. septentrionalis fungus gardens.


Assuntos
Formigas , Infecção Laboratorial , Trichoderma , Animais , Formigas/fisiologia , Jardins , Sinais (Psicologia) , Simbiose , Peptaibols
10.
Phytochem Lett ; 55: 88-96, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37252254

RESUMO

Due to the emergence of resistance, the World Health Organization considers Gram-negative pathogen Acinetobacter baumannii a top priority for therapeutic development. Using this priority pathogen and a phenotypic, agar plate-based assay, a unique library of extracts from 2,500 diverse fungi was screened for antimicrobial activity against a highly virulent, drug-resistant strain of A. baumannii (AB5075). The most potent hit from this screen was an extract from the fungus Tolypocladium sp., which was found to produce pyridoxatin. Another active extract from the fungi Trichoderma deliquescens was characterized and yielded trichokonin VII and trichokonin VIII. Evaluation of pyridoxatin against A. baumannii (AB5075) in a broth microdilution assay revealed a minimum inhibitory concentration (MIC) of 38 µM, compared to the known antibiotic levofloxacin with MIC of 28 µM. Mass spectrometry, Marfey's analysis and nuclear magnetic resonance spectroscopy analyses confirmed the structures of trichokonins VII and VIII to be consistent with previous reports. In an in vivo Galleria mellonella model, pyridoxatin tested at 150 mg/kg exhibited minimal toxicity (90% survival) and promising antimicrobial efficacy (50% survival) after 5 days. Trichokonins VII and VIII tested at 150 mg/kg were toxic to G. mellonella, with 20% survival and 40% survival after 5 days, respectively. The findings of this project suggest that pyridoxatin may serve as a lead compound for the development of antimicrobials against A. baumannii. They also demonstrate the value of the phenotypic screening approach employed herein.

11.
Mol Pharm ; 20(6): 3049-3059, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155928

RESUMO

Verticillins are epipolythiodioxopiperazine alkaloids isolated from a fungus with nanomolar anti-tumor activity in high-grade serous ovarian cancer (HGSOC). HGSOC is the fifth leading cause of death in women, and natural products continue to be an inspiration for new drug entities to help tackle chemoresistance. Verticillin D was recently found in a new fungal strain and compared to verticillin A. Both compounds exhibited nanomolar cytotoxic activity against OVCAR4 and OVCAR8 HGSOC cell lines, significantly reduced 2D foci and 3D spheroids, and induced apoptosis. In addition, verticillin A and verticillin D reduced tumor burden in vivo using OVCAR8 xenografts in the peritoneal space as a model. Unfortunately, mice treated with verticillin D displayed signs of liver toxicity. Tolerability studies to optimize verticillin A formulation for in vivo delivery were performed and compared to a semi-synthetic succinate version of verticillin A to monitor bioavailability in athymic nude females. Formulation of verticillins achieved tolerable drug delivery. Thus, formulation studies are effective at improving tolerability and demonstrating efficacy for verticillins.


Assuntos
Antineoplásicos , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Camundongos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Indóis/uso terapêutico , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral
12.
J Nat Prod ; 86(3): 596-603, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36884371

RESUMO

Macrocyclic alkaloids with a cyclopenta[b]fluorene ring system are a relatively young structural class of fungal metabolites, with the first members reported in 2013. Bioassay-guided fractionation of a Sarocladium sp. (fungal strain MSX6737) led to a series of both known and new members of this structural class (1-5), including the known embellicine A (1), three new embellicine analogues (2, 4, and 5), and a semisynthetic acetylated analogue (3). The structures were identified by examining both high-resolution electrospray ionization mass spectrometry data and one-dimensional and two-dimensional NMR spectra. The relative configurations of these molecules were established via 1H-1H coupling constants and nuclear Overhauser effect spectroscopy, while comparisons of the experimental electronic circular dichroism (ECD) spectra with the time-dependent density functional theory ECD calculations were utilized to assign their absolute configurations, which were in good agreement with the literature. These alkaloids (1-5) showed cytotoxic activity against a human breast cancer cell line (MDA-MB-231) that ranged from 0.4 to 4.8 µM. Compounds 1 and 5 were also cytotoxic against human ovarian (OVCAR3) and melanoma (MDA-MB-435) cancer cell lines.


Assuntos
Alcaloides , Antineoplásicos , Hypocreales , Neoplasias Ovarianas , Feminino , Humanos , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Dicroísmo Circular , Alcaloides/farmacologia , Alcaloides/química , Fluorenos/farmacologia , Estrutura Molecular
13.
ACS Nano ; 17(3): 2212-2221, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36701244

RESUMO

Nanoparticle biodistribution in vivo is an essential component to the success of nanoparticle-based drug delivery systems. Previous studies with fluorescently labeled expansile nanoparticles, or "eNPs", demonstrated a high specificity of eNPs to tumors that is achieved through a materials-based targeting strategy. However, fluorescent labeling techniques are primarily qualitative in nature and the gold-standard for quantitative evaluation of biodistribution is through radiolabeling. In this manuscript, we synthesize 14C-labeled eNPs to quantitatively evaluate the biodistribution of these particles in a murine model of intraperitoneal mesothelioma via liquid scintillation counting. The results demonstrate a strong specificity of eNPs for tumors that lasts one to 2 weeks postinjection with an overall delivery efficiency to the tumor tissue of 30% of the injected dose which is congruent with prior reports of preclinical efficacy of the technology. Importantly, the route of administration is essential to the eNP's material-based targeting strategy with intraperitoneal administration leading to tumoral accumulation while, in contrast, intravenous administration leads to rapid clearance via the reticuloendothelial system and low tumoral accumulation. A comparison against nanoparticle delivery systems published over the past decade shows that the 30% tumoral delivery efficiency of the eNP is significantly higher than the 0.7% median delivery efficiency of other systems with sufficient quantitative data to define this metric. These results lay a foundation for targeting intraperitoneal tumors and encourage efforts to explore alternative, nonintravenous routes, of delivery to accelerate the translation of nanoparticle therapies to the clinic.


Assuntos
Mesotelioma Maligno , Mesotelioma , Nanopartículas , Camundongos , Humanos , Animais , Distribuição Tecidual , Mesotelioma Maligno/tratamento farmacológico , Injeções Intraperitoneais
14.
ACS Nano ; 16(8): 12695-12710, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35939651

RESUMO

Fas ligand (FasL), expressed on the surface of activated cytotoxic T lymphocytes (CTLs), is the physiological ligand for the cell surface death receptor, Fas. The Fas-FasL engagement initiates diverse signaling pathways, including the extrinsic cell death signaling pathway, which is one of the effector mechanisms that CTLs use to kill tumor cells. Emerging clinical and experimental data indicate that Fas is essential for the efficacy of CAR-T cell immunotherapy. Furthermore, loss of Fas expression is a hallmark of human melanoma. We hypothesize that restoring Fas expression in tumor cells reverses human melanoma resistance to T cell cytotoxicity. DNA hypermethylation, at the FAS promoter, down-regulates FAS expression and confers melanoma cell resistance to FasL-induced cell death. Forced expression of Fas in tumor cells overcomes melanoma resistance to FasL-induced cell death in vitro. Lipid nanoparticle-encapsulated mouse Fas-encoding plasmid therapy eliminates Fas+ tumor cells and suppresses established melanoma growth in immune-competent syngeneic mice. Similarly, lipid nanoparticle-encapsulated human FAS-encoding plasmid (hCOFAS01) therapy significantly increases Fas protein levels on tumor cells of human melanoma patient-derived xenograft (PDX) and suppresses the established human melanoma PDX growth in humanized NSG mice. In human melanoma patients, FasL is expressed in activated and exhausted T cells, Fas mRNA level positively correlates with melanoma patient survival, and nivolumab immunotherapy increases FAS expression in tumor cells. Our data demonstrate that hCOFAS01 is an effective immunotherapeutic agent for human melanoma therapy with dual efficacy in increasing tumor cell FAS expression and in enhancing CTL tumor infiltration.


Assuntos
Melanoma , Receptor fas , Humanos , Camundongos , Animais , Receptor fas/genética , Receptor fas/metabolismo , Citotoxicidade Imunológica/genética , Células Tumorais Cultivadas , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Linfócitos T Citotóxicos , Melanoma/patologia , Plasmídeos/genética , Apoptose
15.
Front Oncol ; 12: 929996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847923

RESUMO

Abnormal expression of Forkhead box protein M1 (FOXM1) and serine/threonine kinase Budding uninhibited by benzimidazoles 1 (BUB1B) contributes to the development and progression of several cancers, including chronic myelogenous leukemia (CML). However, the molecular mechanism of the FOXM1/BUB1B regulatory network and the role of Neosetophomone-B (NSP-B) in leukemia remains unclear. NSP-B, a meroterpenoid fungal secondary metabolite, possesses anticancer potential in human leukemic cells lines; however, the underlying mechanism has not been elucidated. The present study aimed to explore the role of NSP-B on FOXM1/BUB1B signaling and the underlying molecular mechanism of apoptosis induction in leukemic cells. We performed gene expression profiling of NSP-B-treated and untreated leukemic cells to search for differentially expressed genes (DEGs). Interestingly BUB1B was found to be significantly downregulated (logFC -2.60, adjusted p = 0.001) in the treated cell line with the highest connectivity score among cancer genes. Analysis of TCGA data revealed overexpression of BUB1B compared to normal in most cancers and overexpression was associated with poor prognosis. BUB1B also showed a highly significant positive correlation with FOXM1 in all the TCGA cancer types. We used human leukemic cell lines (K562 and U937) as an in vitro study model to validate our findings. We found that NSP-B treatment of leukemic cells suppressed the expression of FOXM1 and BUB1B in a dose-dependent manner. In addition, NSP-B also resulted in the downregulation of FOXM1-regulated genes such as Aurora kinase A, Aurora kinase B, CDK4, and CDK6. Suppression of FOXM1 either by siRNA or NSP-B reduced BUB1B expression and enhanced cell survival inhibition and induction of apoptosis. Interestingly combination treatment of thiostrepton and NSP-B suppressed of cell viability and inducted apoptosis in leukemic cells via enhancing the activation of caspase-3 and caspase-8 compared with single-agent treatment. These results demonstrate the important role of the FOXM1/BUB1B pathway in leukemia and thus a potential therapeutic target.

16.
J Nat Prod ; 85(8): 2018-2025, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35834411

RESUMO

Hypothemycin, an epoxide derivative of (5Z)-7-oxozeaenol, was used in the semisynthesis of a series of C8-C9 diol derivatives, with many inhibiting TAK1 at submicromolar concentrations. A step-economical approach was chosen, whereby nonselective reactions functionalized the diol to generate multiple analogues in a single reaction. Using this approach, 35 analogues were synthesized using 12 reactions, providing a wealth of information about the role that the C8-C9 diol plays in TAK1 inhibition and cytotoxicity in ovarian and breast cancer cell lines. Monofunctionalized analogues exhibited strong inhibition of TAK1, showing potential for modification of this section of the molecule to assist with solubility, formulation, and other desirable properties. Most analogues were cytotoxic, and three compounds had similar or slightly increased potency with >100-fold improvement in solubility profiles.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Zearalenona/análogos & derivados
17.
Biochem Biophys Res Commun ; 601: 59-64, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35228122

RESUMO

Neosetophomone B (NSP-B), a meroterpenoid fungal secondary metabolite, was investigated for its anticancer potential in leukemic cell lines (K562 and U937). NSP-B treatment of leukemic cells suppressed cell viability by triggering apoptotic cell death. Apoptosis induced by NSP-B is triggered by mitochondrial signaling and caspase activation. Additionally, NSP-B treatment of leukemic cells causes AKT's inactivation accompanied by downregulation of SKP2 oncogene and MTH1 with a concomitant increase of p21Cip1and p27Kip1. Furthermore, NSP-B causes suppression of antiapoptotic proteins, including cIAP1, cIAP2, XIAP, survivin and BCl-XL. Overall, NSP-B reduces cell viability by mitochondrial and caspase-dependent apoptosis. The inhibition of AKT and SKP2 axis could be a promising therapeutic target for leukemia treatment.


Assuntos
Enzimas Reparadoras do DNA , Leucemia , Monoéster Fosfórico Hidrolases , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases Associadas a Fase S , Terpenos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Enzimas Reparadoras do DNA/metabolismo , Humanos , Células K562 , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais/efeitos dos fármacos , Terpenos/farmacologia , Células U937
18.
Oncogene ; 41(18): 2651-2662, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35351997

RESUMO

The role of glucose-6-phosphate dehydrogenase (G6PD) in human cancer is incompletely understood. In a metabolite screening, we observed that inhibition of H3K9 methylation suppressed aerobic glycolysis and enhances the PPP in human mesothelioma cells. Genome-wide screening identified G6PD as an H3K9me3 target gene whose expression is correlated with increased tumor cell apoptosis. Inhibition of aerobic glycolysis enzyme LDHA and G6PD had no significant effects on tumor cell survival. Ablation of G6PD had no significant effect on human mesothelioma and colon carcinoma xenograft growth in athymic mice. However, activation of G6PD with the G6PD-selective activator AG1 induced tumor cell death. AG1 increased tumor cell ROS production and the resultant extrinsic and intrinsic death pathways, mitochondrial processes, and unfolded protein response in tumor cells. Consistent with increased tumor cell death in vitro, AG1 suppressed human mesothelioma xenograft growth in a dose-dependent manner in vivo. Furthermore, AG1 treatment significantly increased tumor-bearing mouse survival in an intra-peritoneum xenograft athymic mouse model. Therefore, in human mesothelioma and colon carcinoma, G6PD is not essential for tumor growth. G6PD acts as a metabolic checkpoint to control metabolic flux towards the PPP to promote tumor cell apoptosis, and its expression is repressed by its promotor H3K9me3 deposition.


Assuntos
Carcinoma , Mesotelioma , Animais , Modelos Animais de Doenças , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Humanos , Mesotelioma/genética , Camundongos , Camundongos Nus , Via de Pentose Fosfato , Espécies Reativas de Oxigênio/metabolismo
19.
J Nat Prod ; 85(3): 702-719, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213158

RESUMO

Research progress from mainly over the last five years is described for a multidisciplinary collaborative program project directed toward the discovery of potential anticancer agents from a broad range of taxonomically defined organisms. Selected lead compounds with potential as new antitumor agents that are representative of considerable structural diversity have continued to be obtained from each of tropical plants, terrestrial and aquatic cyanobacteria, and filamentous fungi. Recently, a new focus has been on the investigation of the constituents of U.S. lichens and their fungal mycobionts. A medicinal chemistry and pharmacokinetics component of the project has optimized structurally selected lead natural products, leading to enhanced cytotoxic potencies against selected cancer cell lines. Biological testing has shown several compounds to have in vivo activity, and relevant preliminary structure-activity relationship and mechanism of action studies have been performed. Several promising lead compounds worthy of further investigation have been identified from the most recent collaborative work performed.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Antineoplásicos/química , Produtos Biológicos/química , Humanos , Neoplasias/tratamento farmacológico , Plantas/química , Relação Estrutura-Atividade
20.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35017152

RESUMO

BACKGROUND: Granzyme B is a key effector of cytotoxic T lymphocytes (CTLs), and its expression level positively correlates with the response of patients with mesothelioma to immune checkpoint inhibitor immunotherapy. Whether metabolic pathways regulate Gzmb expression in CTLs is incompletely understood. METHODS: A tumor-specific CTL and tumor coculture model and a tumor-bearing mouse model were used to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in CTL function and tumor immune evasion. A link between granzyme B expression and patient survival was analyzed in human patients with epithelioid mesothelioma. RESULTS: Mesothelioma cells alone are sufficient to activate tumor-specific CTLs and to enhance aerobic glycolysis to induce a PD-1hi Gzmblo CTL phenotype. However, inhibition of lactate dehydrogenase A, the key enzyme of the aerobic glycolysis pathway, has no significant effect on tumor-induced CTL activation. Tumor cells induce H3K9me3 deposition at the promoter of G6pd, the gene that encodes the rate-limiting enzyme G6PD in the pentose phosphate pathway, to downregulate G6pd expression in tumor-specific CTLs. G6PD activation increases acetyl-coenzyme A (CoA) production to increase H3K9ac deposition at the Gzmb promoter and to increase Gzmb expression in tumor-specific CTLs converting them from a Gzmblo to a Gzmbhi phenotype, thus increasing CTL tumor lytic activity. Activation of G6PD increases Gzmb+ tumor-specific CTLs and suppresses tumor growth in tumor-bearing mice. Consistent with these findings, GZMB expression level was found to correlate with increased survival in patients with epithelioid mesothelioma. CONCLUSION: G6PD is a metabolic checkpoint in tumor-activated CTLs. The H3K9me3/G6PD/acetyl-CoA/H3K9ac/Gzmb pathway is particularly important in CTL activation and immune evasion in epithelioid mesothelioma.


Assuntos
Glucosefosfato Desidrogenase/metabolismo , Granzimas/metabolismo , Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Redes e Vias Metabólicas/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T/metabolismo , Evasão Tumoral/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA