Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-37503155

RESUMO

Biallelic germline mutations in the SLC25A1 gene lead to combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a fatal systemic disease uniquely characterized by the accumulation of both enantiomers of 2-hydroxyglutaric acid (2HG). How SLC25A1 deficiency contributes to D/L-2HGA and the role played by 2HG is unclear and no therapy exists. Both enantiomers act as oncometabolites, but their activities in normal tissues remain understudied. Here we show that mice lacking both SLC25A1 alleles exhibit developmental abnormalities that mirror human D/L-2HGA. SLC25A1 deficient cells undergo premature senescence, suggesting that loss of proliferative capacity underlies the pathogenesis of D/L-2HGA. Remarkably, D- and L-2HG directly induce senescence and treatment of zebrafish embryos with the combination of D- and L-2HG phenocopies SLC25A1 loss, leading to developmental abnormalities in an additive fashion relative to either enantiomer alone. Metabolic analyses further demonstrate that cells with dysfunctional SLC25A1 undergo mitochondrial respiratory deficit and remodeling of the metabolism and we propose several strategies to correct these defects. These results reveal for the first time pathogenic and growth suppressive activities of 2HG in the context of SLC25A1 deficiency and suggest that targeting the 2HG pathway may be beneficial for the treatment of D/L-2HGA.

2.
Mol Biomed ; 3(1): 16, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35614362

RESUMO

Cancer metastasis is the primary cause of the high mortality rate among human cancers. Efforts to identify therapeutic agents targeting cancer metastasis frequently fail to demonstrate efficacy in clinical trials despite strong preclinical evidence. Until recently, most preclinical studies used mouse models to evaluate anti-metastatic agents. Mouse models are time-consuming and expensive. In addition, an important drawback is that mouse models inadequately model the early stages of metastasis which plausibly leads to the poor correlation with clinical outcomes.Here, we report an in vivo model based on xenografted zebrafish embryos where we select for progressively invasive subpopulations of MDA-MB-231 breast cancer cells. A subpopulation analogous to circulating tumor cells found in human cancers was selected by injection of MDA-MB-231 cells into the yolk sacs of 2 days post-fertilized zebrafish embryos and selecting cells that migrated to the tail. The selected subpopulation derived from MDA-MB-231 cells were increasingly invasive in zebrafish. Isolation of these subpopulations and propagation in vitro revealed morphological changes consistent with activation of an epithelial-mesenchymal transition program. Differential gene analysis and knockdown of genes identified gene-candidates (DDIT4, MT1X, CTSD, and SERPINE1) as potential targets for anti-metastasis therapeutics. Furthermore, RNA-splicing analysis reinforced the importance of BIRC5 splice variants in breast cancer metastasis. This is the first report using zebrafish to isolate and expand progressively invasive populations of human cancer cells. The model has potential applications in understanding the metastatic process, identification and/or development of therapeutics that specifically target metastatic cells and formulating personalized treatment strategies for individual cancer patients.

3.
Mol Cancer Ther ; 20(10): 1800-1808, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253593

RESUMO

Metastasis is the major cause of mortality in patients with breast cancer. Many signaling pathways have been linked to cancer invasiveness, but blockade of few protein components has succeeded in reducing metastasis. Thus, identification of proteins contributing to invasion that are manipulable by small molecules may be valuable in inhibiting spread of the disease. The protein kinase with no lysine (K) 1 (WNK1) has been suggested to induce migration of cells representing a range of cancer types. Analyses of mouse models and patient data have implicated WNK1 as one of a handful of genes uniquely linked to invasive breast cancer. Here, we present evidence that inhibition of WNK1 slows breast cancer metastasis. We show that depletion or inhibition of WNK1 reduces migration of several breast cancer cell lines in wound healing assays and decreases invasion in collagen matrices. Furthermore, WNK1 depletion suppresses expression of AXL, a tyrosine kinase implicated in metastasis. Finally, we demonstrate that WNK inhibition in mice attenuates tumor progression and metastatic burden. These data showing reduced migration, invasion, and metastasis upon WNK1 depletion in multiple breast cancer models suggest that WNK1 contributes to the metastatic phenotype, and that WNK1 inhibition may offer a therapeutic avenue for attenuating progression of invasive breast cancers.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Imidazóis/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Pirrolidinas/farmacologia , Células Tumorais Cultivadas , Proteína Quinase 1 Deficiente de Lisina WNK/antagonistas & inibidores , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Res ; 81(16): 4230-4241, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34135000

RESUMO

AIB1Δ4 is an N-terminally truncated isoform of the oncogene amplified in breast cancer 1 (AIB1) with increased expression in high-grade human ductal carcinoma in situ (DCIS). However, the role of AIB1Δ4 in DCIS malignant progression has not been defined. Here we CRISPR-engineered RNA splice junctions to produce normal and early-stage DCIS breast epithelial cells that expressed only AIB1Δ4. These cells showed enhanced motility and invasion in 3D cell culture. In zebrafish, AIB1Δ4-expressing cells enabled invasion of parental cells when present in a mixed population. In mouse xenografts, a subpopulation of AIB1Δ4 cells mixed with parental cells enhanced tumor growth, recurrence, and lung metastasis. AIB1Δ4 chromatin immunoprecipitation sequencing revealed enhanced binding to regions including peroxisome proliferator-activated receptor (PPAR) and glucocorticoid receptor (GR) genomic recognition sites. H3K27ac and H3K4me1 genomic engagement patterns revealed selective activation of breast cancer-specific enhancer sites by AIB1Δ4. AIB1Δ4 cells displayed upregulated inflammatory response genes and downregulated PPAR signaling gene expression patterns. In the presence of AIB1Δ4 enabler cells, parental cells increased NF-κB and WNT signaling. Cellular cross-talk was inhibited by the PPARγ agonist efatutazone but was enhanced by treatment with the GR agonist dexamethasone. In conclusion, expression of the AIB1Δ4-selective cistrome in a small subpopulation of cells triggers an "enabler" phenotype hallmarked by an invasive transcriptional program and collective malignant progression in a heterogeneous tumor population. SIGNIFICANCE: A minor subset of early-stage breast cancer cells expressing AIB1Δ4 enables bulk tumor cells to become invasive, suggesting that selective eradication of this population could impair breast cancer metastasis.


Assuntos
Coativador 3 de Receptor Nuclear/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Sistemas CRISPR-Cas , Técnicas de Cultura de Células em Três Dimensões , Linhagem Celular Tumoral , Dexametasona/química , Progressão da Doença , Impedância Elétrica , Elementos Facilitadores Genéticos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Coativador 3 de Receptor Nuclear/química , Fenótipo , Isoformas de Proteínas , Splicing de RNA , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Tiazolidinedionas/farmacologia , Peixe-Zebra
5.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374314

RESUMO

Using a data driven analysis of a high-content screen, we have uncovered new regulators of epithelial-to-mesenchymal transition (EMT) induced cell migration. Our results suggest that increased expression of miR614 can alter cell intrinsic gene expression to enhance single cell and collective migration in multiple contexts. Interestingly, miR614 specifically increased the expression of the EMT transcription factor Slug while not altering existing epithelial character or inducing other canonical EMT regulatory factors. Analysis of two different cell lines identified a set of genes whose expression is altered by the miR614 through direct and indirect mechanisms. Prioritization driven by functional testing of 25 of the miR614 suppressed genes uncovered the mitochondrial small GTPase Miro1 and the transmembrane protein TAPT1 as miR614 suppressed genes that inhibit migration. Notably, the suppression of either Miro1 or TAPT1 was sufficient to increase Slug expression and the rate of cell migration. Importantly, reduced TAPT1 expression correlated with an increased risk of relapse in breast cancer patients. Together, our results reveal how increased miR614 expression and the suppression of TAPT1 and Miro1 modulate the EMT state and migratory properties of breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica , MicroRNAs/biossíntese , RNA Neoplásico/biossíntese , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/genética
6.
Cancer Res ; 80(18): 3933-3944, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32661136

RESUMO

Defining how interactions between tumor subpopulations contribute to invasion is essential for understanding how tumors metastasize. Here, we find that the heterogeneous expression of the transcription factor ΔNp63 confers distinct proliferative and invasive epithelial-to-mesenchymal transition (EMT) states in subpopulations that establish a leader-follower relationship to collectively invade. A ΔNp63-high EMT program coupled the ability to proliferate with an IL1α- and miR-205-dependent suppression of cellular protrusions that are required to initiate collective invasion. An alternative ΔNp63-low EMT program conferred cells with the ability to initiate and lead collective invasion. However, this ΔNp63-low EMT state triggered a collateral loss of fitness. Importantly, rare growth-suppressed ΔNp63-low EMT cells influenced tumor progression by leading the invasion of proliferative ΔNp63-high EMT cells in heterogeneous primary tumors. Thus, heterogeneous activation of distinct EMT programs promotes a mode of collective invasion that overcomes cell intrinsic phenotypic deficiencies to induce the dissemination of proliferative tumor cells. SIGNIFICANCE: These findings reveal how an interaction between cells in different EMT states confers properties that are not induced by either EMT program alone.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Invasividade Neoplásica/fisiopatologia , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Extensões da Superfície Celular , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/patologia , Feminino , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , RNA Interferente Pequeno/metabolismo , Esferoides Celulares , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
7.
J Vis Exp ; (160)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32658183

RESUMO

Significant progress has been made in treating cancer with immunotherapy, although a large number of cancers remain resistant to treatment. A limited number of assays allow for direct monitoring and mechanistic insights into the interactions between tumor and immune cells, amongst which, T-cells play a significant role in executing the cytotoxic response of the adaptive immune system to cancer cells. Most assays are based on two-dimensional (2D) co-culture of cells due to the relative ease of use but with limited representation of the invasive growth phenotype, one of the hallmarks of cancer cells. Current three-dimensional (3D) co-culture systems either require special equipment or separate monitoring for invasion of co-cultured cancer cells and interacting T-cells. Here we describe an approach to simultaneously monitor the invasive behavior in 3D of cancer cell spheroids and T-cell cytotoxicity in co-culture. Spheroid formation is driven by enhanced cell-cell interactions in scaffold-free agarose microwell casts with U-shaped bottoms. Both T-cell co-culture and cancer cell invasion into type I collagen matrix are performed within the microwells of the agarose casts without the need to transfer the cells, thus maintaining an intact 3D co-culture system throughout the assay. The collagen matrix can be separated from the agarose cast, allowing for immunofluorescence (IF) staining and for confocal imaging of cells. Also, cells can be isolated for further growth or subjected to analyses such as for gene expression or fluorescence activated cell sorting (FACS). Finally, the 3D co-culture can be analyzed by immunohistochemistry (IHC) after embedding and sectioning. Possible modifications of the assay include altered compositions of the extracellular matrix (ECM) as well as the inclusion of different stromal or immune cells with the cancer cells.


Assuntos
Técnicas de Cocultura/métodos , Linfócitos T Citotóxicos/citologia , Comunicação Celular , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Humanos , Invasividade Neoplásica , Esferoides Celulares/patologia
8.
J Clin Med ; 8(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083398

RESUMO

Epithelial-to-mesenchymal transition (EMT) programs contribute to the acquisition of invasive properties that are essential for metastasis. It is well established that EMT programs alter cell state and promote invasive behavior. This review discusses how rather than following one specific program, EMT states are diverse in their regulation and invasive properties. Analysis across a spectrum of models using a combination of approaches has revealed how unique features of distinct EMT programs dictate whether tumor cells invade as single cells or collectively as cohesive groups of cells. It has also been shown that the mode of collective invasion is determined by the nature of the EMT, with cells in a trailblazer-type EMT state being capable of initiating collective invasion, whereas cells that have undergone an opportunist-type EMT are dependent on extrinsic factors to invade. In addition to altering cell intrinsic properties, EMT programs can influence invasion through non-cell autonomous mechanisms. Analysis of tumor subpopulations has demonstrated how EMT-induced cells can drive the invasion of sibling epithelial populations through paracrine signaling and remodeling of the microenvironment. Importantly, the variation in invasive properties controlled by EMT programs influences the kinetics and location of metastasis.

9.
Oncotarget ; 7(19): 28592-611, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27081041

RESUMO

Tumor invasion can be induced by changes in gene expression that alter cell phenotype. The transcription factor ΔNp63α promotes basal-like breast cancer (BLBC) migration by inducing the expression of the mesenchymal genes Slug and Axl, which confers cells with a hybrid epithelial/mesenchymal state. However, the extent of the ΔNp63α regulated genes that support invasive behavior is not known. Here, using gene expression analysis, ChIP-seq, and functional testing, we find that ΔNp63α promotes BLBC motility by inducing the expression of the atypical cadherin FAT2, the vesicular binding protein SNCA, the carbonic anhydrase CA12, the lipid binding protein CPNE8 and the kinase NEK1, along with Slug and Axl. Notably, lung squamous cell carcinoma migration also required ΔNp63α dependent FAT2 and Slug expression, demonstrating that ΔNp63α promotes migration in multiple tumor types by inducing mesenchymal and non-mesenchymal genes. ΔNp63α activation of FAT2 and Slug influenced E-cadherin localization to cell-cell contacts, which can restrict spontaneous cell movement. Moreover, live-imaging of spheroids in organotypic culture demonstrated that ΔNp63α, FAT2 and Slug were essential for the extension of cellular protrusions that initiate collective invasion. Importantly, ΔNp63α is co-expressed with FAT2 and Slug in patient tumors and the elevated expression of ΔNp63α, FAT2 and Slug correlated with poor patient outcome. Together, these results reveal how ΔNp63α promotes cell migration by directly inducing the expression of a cohort of genes with distinct cellular functions and suggest that FAT2 is a new regulator of collective invasion that may influence patient outcome.


Assuntos
Caderinas/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
10.
Oncotarget ; 7(12): 14708-26, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26895102

RESUMO

Genes that are normally biased towards expression in the testis are often induced in tumor cells. These gametogenic genes, known as cancer-testis antigens (CTAs), have been extenstively investigated as targets for immunotherapy. However, despite their frequent detection, the degree to which CTAs support neoplastic invasion is poorly understood. Here, we find that the CTA genes SPANX-A/C/D and CTAG2 are coordinately induced in breast cancer cells and regulate distinct features of invasive behavior. Our functional analysis revealed that CTAG2 interacts with Pericentrin at the centrosome and is necessary for directional migration. Conversely, SPANX-A/C/D interacts with Lamin A/C at the inner nuclear membrane and is required for the formation of actin-rich cellular protrusions that reorganize the extracellular matrix. Importantly, SPANX-A/C/D was required for breast cancer cells to spontaneously metastasize to the lung, demonstrating that CTA reactivation can be critical for invasion dependent phenotypes in vivo. Moreover, elevated SPANX-A/C/D expression in breast cancer patient tumors correlated with poor outcome. Together, our results suggest that distinct CTAs promote tumor progression by regulating complementary cellular functions that are integrated together to induce invasive behavior.


Assuntos
Antígenos de Neoplasias/metabolismo , Antígenos de Superfície/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Animais , Apoptose , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA