Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Res Notes ; 16(1): 267, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821884

RESUMO

OBJECTIVES: Equine tendinopathies are challenging because of the poor healing capacity of tendons commonly resulting in high re-injury rates. Within the tendon, different regions - tendon proper (TP) and peritenon (PERI) - contribute to the tendon matrix in differing capacities during injury and aging. Aged tendons have decreased repair potential; the underlying transcriptional and epigenetic changes that occur in the TP and PERI regions are not well understood. The objective of this study was to assess TP and PERI regional differences in adolescent, midlife, and geriatric horses using RNA sequencing and DNA methylation techniques. RESULTS: Differences existed between TP and PERI regions of equine superficial digital flexor tendons by age as evidenced by RNASeq and DNA methylation. Cluster analysis indicated that regional distinctions existed regardless of age. Genes such as DCN, COMP, FN1, and LOX maintained elevated TP expression while genes such as GSN and AHNAK were abundant in PERI. Increased gene activity was present in adolescent and geriatric populations but decreased during midlife. Regional differences in DNA methylation were also noted. Notably, when evaluating all ages of TP against PERI, five genes (HAND2, CHD9, RASL11B, ADGRD1, and COL14A1) had regions of differential methylation as well as differential gene expression.


Assuntos
Doenças dos Cavalos , Transcriptoma , Cavalos/genética , Animais , Metilação , Tendões/metabolismo , Envelhecimento/genética , Genômica
2.
J Equine Vet Sci ; 126: 104262, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36841345

RESUMO

Tendinopathies remain the leading contributor to career-ending injuries in horses because of the complexity of tendon repair. As such, cell-based therapies like injections of adipose-derived mesenchymal stem cells (ADMSCs, or MSCs) into injured tendons are becoming increasingly popular though their long-term efficacy on a molecular and wholistic level remains contentious. Thus, we co-cultured equine MSCs with intrinsic (tendon proper) and extrinsic (peritenon) tendon cell populations to examine interactions between these cells. Gene expression for common tenogenic, perivascular, and differentiation markers was quantified at 48 and 120 hours. Additionally, cellular metabolism of proliferation was examined every 24 hours for peritenon and tendon proper cells co-cultured with MSCs. MSCs co-cultured with tendon proper or peritenon cells had altered expression profiles demonstrating trend toward tenogenic phenotype with the exception of decreases in type I collagen (COL1A1). Peritenon cells co-cultured with MSCs had a trending and significant decrease in biglycan (BGN) and CSPG4 at 48 hours and 120 hours but overall significant increases in lysyl oxidase (LOX), mohawk (MKX), and scleraxis (SCX) within 48 hours. Tendon proper cells co-cultured with MSCs also exhibited increases in LOX and SCX at 48 hours. Furthermore, cell proliferation improved overall for tendon proper cells co-cultured with MSCs. The co-culture study results suggest that adipose-derived MSCs contribute beneficially to tenogenic stimulation of peritenon or tendon proper cells.


Assuntos
Células-Tronco Mesenquimais , Tendões , Cavalos , Animais , Técnicas de Cocultura/veterinária , Tendões/metabolismo , Células-Tronco Mesenquimais/metabolismo
3.
Adv Exp Med Biol ; 1348: 5-43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807414

RESUMO

The physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity. The structures and functions of these collagens are discussed in this chapter. Furthermore, collagen synthesis is a multi-step process that includes gene transcription, translation, post-translational modifications within the cell, triple helix formation, extracellular secretion, extracellular modifications, and then fibril assembly, fibril modifications, and fiber formation. Each step of collagen synthesis and fibril assembly is highly dependent upon the biochemical structure of the collagen molecules created and how they are modified in the cases of development and maturation. Likewise, when the biochemical structures of collagens or are compromised or these molecules are deficient in the tissues - in developmental diseases, degenerative conditions, or injuries - then the ultimate form and function of the connective tissues are impaired. In this chapter, we also review how biochemistry plays a role in each of the processes involved in collagen synthesis and assembly, and we describe differences seen by anatomical location and region within tendons. Moreover, we discuss how the structures of the molecules, fibrils, and fibers contribute to connective tissue physiology in health, and in pathology with injury and repair.


Assuntos
Colágeno , Matriz Extracelular , Tecido Conjuntivo , Colágenos Fibrilares , Tendões
4.
Poult Sci ; 100(4): 101020, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33662658

RESUMO

Significant improvements in genetics, nutrition, and food efficiency have had a great impact on the rapid growth of broilers, notably with increases in muscle mass. However, with rapid growth, the broiler industry has been negatively impacted by the increased incidence of myopathies, including white striping. White striping affects the pectoralis major muscle of broilers, particularly the larger breasts of rapidly growing modern commercial broiler lines. In this study, we documented the growth process of commercial broiler chickens from hatching to market weight at 6 wk. Gross pathology and histopathology analyses were performed on pectoralis major muscle collected weekly from birds culled from 1 to 6 wk. The severity of both gross and histologic pathologies in the breast muscle increased over time. White striping was initially observed at week 2, with a rise in the incidence and severity through the sixth week. Mild histopathology was noted in week 2, characterized by macrophage infiltration and limited phagocytosis of the muscle. Muscle condition deteriorated with age and weight gain, with more prevalent macrophages, phagocytosis, and interstitial fibroblasts. By week 5 and 6, there was severe myopathy including regions of obliterated muscle tissue. Linear regression models show a positive correlation between white striping, gross pathology, and histopathology relative to weight and age.


Assuntos
Doenças Musculares , Doenças das Aves Domésticas , Animais , Galinhas , Incidência , Carne/análise , Doenças Musculares/epidemiologia , Doenças Musculares/etiologia , Doenças Musculares/veterinária , Músculos Peitorais , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/etiologia , Aumento de Peso
5.
BMC Musculoskelet Disord ; 21(1): 627, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967653

RESUMO

BACKGROUND: Tendon injuries amount to one of the leading causes of career-ending injuries in horses due to the inability for tendon to completely repair and the high reinjury potential. As a result, novel therapeutics are necessary to improve repair with the goal of decreasing leg lameness and potential reinjury. Small leucine-rich repeat proteoglycans (SLRPs), a class of regulatory molecules responsible for collagen organization and maturation, may be one such therapeutic to improve tendon repair. Before SLRP supplementation can occur in vivo, proper evaluation of the effect of these molecules in vitro needs to be assessed. The objective of this study was to evaluate the effectiveness of purified bovine biglycan or decorin on tendon proper and peritenon cell populations in three-dimensional tendon constructs. METHODS: Equine tendon proper or peritenon cell seeded fibrin three-dimensional constructs were supplemented with biglycan or decorin at two concentrations (5 nM or 25 nM). The functionality and ultrastructural morphology of the constructs were assessed using biomechanics, collagen content analysis, transmission electron microscopy (TEM), and gene expression by real time - quantitative polymerase chain reaction (RT-qPCR). RESULTS: SLRP supplementation affected both tendon proper and peritenon cells-seeded constructs. With additional SLRPs, material and tensile properties of constructs strengthened, though ultrastructural analyses indicated production of similar-sized or smaller fibrils. Overall expression of tendon markers was bolstered more in peritenon cells supplemented with either SLRP, while supplementation of SLRPs to TP cell-derived constructs demonstrated fewer changes in tendon and extracellular matrix markers. Moreover, relative to non-supplemented tendon proper cell-seeded constructs, SLRP supplementation of the peritenon cells showed increases in mechanical strength, material properties, and collagen content. CONCLUSIONS: The SLRP-supplemented peritenon cells produced constructs with greater mechanical and material properties than tendon proper seeded constructs, as well as increased expression of matrix assembly molecules. These findings provide evidence that SLRPs should be further investigated for their potential to improve tendon formation in engineered grafts or post-injury.


Assuntos
Colágeno , Proteínas da Matriz Extracelular , Animais , Biglicano , Bovinos , Decorina , Cavalos , Tendões
6.
PLoS One ; 14(4): e0216211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31039168

RESUMO

A healthy gastrointestinal (GI) tract with a properly established microbiota is necessary for a foal to develop into a healthy weanling. A foal's health can be critically impacted by aberrations in the microbiome such as with diarrhea which can cause great morbidity and mortality in foals. In this study, we hypothesized that gut establishment in the foal transitioning from a diet of milk to a diet of grain, forage, and pasture would be detectable through analyses of the fecal microbiotas. Fecal samples from 37 sets of foals and mares were collected at multiple time points ranging from birth to weaning. Bacterial DNA was isolated from the samples, and the V4 domain of bacterial 16S rRNA genes were amplified via polymerase chain reaction. Next generation sequencing was then performed on the resulting amplicons, and analyses were performed to characterize the microbiome as well as the relative abundance of microbiota present. We found that bacterial population compositions followed a pattern throughout the early life of the foal in an age-dependent manner. As foals transitioned from milk consumption to a forage and grain diet, there were recognizable changes in fecal microbial compositions from initial populations predominant in the ability to metabolize milk to populations capable of utilizing fibrous plant material. We were also able to recognize differences in microbial populations amongst diarrheic foals as well as microbial population differences associated with differences in management styles between facilities. Future efforts will gauge the effects of lesser abundant bacterial populations that could also be essential to GI health, as well as to determine how associations between microbial population profiles and animal management practices can be used to inform strategies for improving upon the health and growth of horses overall.


Assuntos
Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Cavalos/microbiologia , Microbiota , Desmame , Animais , Animais Recém-Nascidos , Bactérias/crescimento & desenvolvimento , Biodiversidade , Metagenômica , Filogenia , Análise de Componente Principal
7.
Poult Sci ; 98(1): 413-421, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690615

RESUMO

Conventional broiler diets include synthetic methionine to optimize fast muscle growth. Recently, a conventional synthetic methionine-rich diet was compared to alternative diet regimens providing natural sources of methionine. Broilers fed diets with natural methionine sources grew at a slightly slower rate. From this study, we hypothesized that the difference in a growth rate would be reflected in features of the breast muscle from broilers fed the alternative diet. We hypothesized that white striping of pectoralis major muscle would be reduced in slower growing broilers fed the alternative diet regimen with natural methionine. We also hypothesized that there would be associated differences in gene expression for cell differentiation and pathology markers. Broilers fed a conventional corn/soy diet regimen with synthetic methionine were compared to those fed roasted cowpea and sunflower seed meal (60% corn/soy, 20% sunflower seed meal, and 20% roasted cowpea) and no synthetic methionine. Overall broiler growth, muscle gene expression, and muscle collagen content data were compared. Expression analyses of combinations of MYOD1, PPARG, COL1A2, TRIM63, SOD1, PTGS2, and CD36 genes were used to examine differentiation and inflammation in the pectoralis muscles. The group fed an alternative diet gained less weight than those fed the control diet in the starter and grower phases but not in the finisher phase. Ultimately, the conventional diet resulted in a greater final weight for the broilers. However, mean white striping scores for the pectoralis major muscles were greater in the conventional control diet regimen. Gene expression results indicated greater expression of PPARG, PTGS2, and CD36 in the muscle of broilers fed the control diet. These data associate white striping with fat deposition and inflammation. Thus, whether due to differences in feed intake, growth rate, or actual compositional differences, the alternative diet with natural methionine sources seemed to curtail amounts of white striping in broiler muscle. More studies are necessary to further discern the effect of growth rate and natural methionine sources on white striping.


Assuntos
Ração Animal/análise , Galinhas , Metionina/administração & dosagem , Doenças Musculares/veterinária , Doenças das Aves Domésticas/metabolismo , Animais , Dieta/veterinária , Feminino , Expressão Gênica , Masculino , Carne/análise , Metionina/efeitos adversos , Doenças Musculares/genética , Doenças Musculares/metabolismo , Músculos Peitorais/química , Músculos Peitorais/crescimento & desenvolvimento , Doenças das Aves Domésticas/genética
8.
J Orthop Res ; 37(6): 1409-1418, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29926971

RESUMO

Progenitor cells of the tendon proper and peritenon have unique properties that could impact their utilization in tendon repair strategies. While a few markers have been found to aid in distinguishing progenitors cells from each region, there is great value in identifying more markers. In this study, we hypothesized that RNAseq could be used to improve our understanding of those markers that define these cell types. Transcriptome profiles were generated for pools of mouse Achilles tendon progenitor cells from both regions and catalogues of potential markers were generated. Moreover, common (e.g., glycoprotein, signaling, and proteinaceous extracellular matrix) and unique (e.g., cartilage development versus angiogenesis and muscle contraction) biological processes and molecular functions were described for progenitors from each region. Real-time quantitative PCR of a subset of genes was used to gain insight into the heterogeneity amongst individual progenitor colonies from each region. Markers like Scx, Mkx, Thbs4, and Wnt10a were consistently able to distinguish tendon proper progenitors from peritenon progenitors; expression variability for other genes suggested greater cell type complexity for potential peritenon progenitor markers. This is the first effort to define Achilles tendon progenitor markers by region. Further efforts to investigate the value of these cataloged markers are required by screening more individual colonies of progenitors for more markers. Clinical Significance: Findings from this study advance efforts in the discernment of cell type specific markers for tendon proper and peritenon progenitor cells; insight into marker sets could improve tracking and sorting strategies for these cells for future therapeutic strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1409-1418, 2019.


Assuntos
Tendão do Calcâneo/citologia , Células-Tronco/metabolismo , Tendões/citologia , Transcriptoma , Animais , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA