Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37430851

RESUMO

Keeping natural ecosystems and their functions in the proper condition is necessary. One of the best contactless monitoring methods is remote sensing, especially optical remote sensing, which is used for vegetation applications. In addition to satellite data, data from ground sensors are necessary for validation or training in ecosystem-function quantification. This article focuses on the ecosystem functions associated with aboveground-biomass production and storage. The study contains an overview of the remote-sensing methods used for ecosystem-function monitoring, especially methods for detecting primary variables linked to ecosystem functions. The related studies are summarized in multiple tables. Most studies use freely available Sentinel-2 or Landsat imagery, with Sentinel-2 mostly producing better results at larger scales and in areas with vegetation. The spatial resolution is a key factor that plays a significant role in the accuracy with which ecosystem functions are quantified. However, factors such as spectral bands, algorithm selection, and validation data are also important. In general, optical data are usable even without supplementary data.

2.
Environ Monit Assess ; 195(7): 819, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286820

RESUMO

In light of global change, research on ecosystem dynamics and the related environmental policies are increasingly required to face with the inherent polarization in areas with low and high human pressure. Differential levels of human pressure are hypothesized to reflect development paths toward ecological stability of local systems vis à vis socioeconomic resilience. To delineate the latent nexus between socioeconomic development paths and ecological stability of local systems, we proposed a multidimensional, diachronic analysis of 28 indicators of territorial disparities, and ecological stability in 206 homogeneous administrative units of Czech Republic over almost 30 years (1990-2018). Mixing time-invariant factors with time-varying socio-environmental attributes, a dynamic factor analysis investigated the latent relationship between ecosystem functions, environmental pressures, and the background socioeconomic characteristics of the selected spatial units. We identified four geographical gradients in Czech Republic (namely elevation, economic agglomeration, demographic structure, and soil imperviousness) at the base of territorial divides associated with the increased polarization in areas with low and high human pressure. The role of urbanization, agriculture, and loss of natural habitats reflective of rising human pressure was illustrated along the selected gradients. Finally, policy implications of the (changing) geography of ecological disturbances and local development paths in Czech Republic were briefly discussed.


Assuntos
Ecossistema , Monitoramento Ambiental , Humanos , República Tcheca , Fatores Socioeconômicos , Urbanização , Conservação dos Recursos Naturais
3.
Plants (Basel) ; 9(4)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295289

RESUMO

Seed dormancy and timing of its release is an important developmental transition determining the survival of individuals, populations, and species in variable environments. Medicago truncatula was used as a model to study physical seed dormancy at the ecological and genetics level. The effect of alternating temperatures, as one of the causes releasing physical seed dormancy, was tested in 178 M. truncatula accessions over three years. Several coefficients of dormancy release were related to environmental variables. Dormancy varied greatly (4-100%) across accessions as well as year of experiment. We observed overall higher physical dormancy release under more alternating temperatures (35/15 °C) in comparison with less alternating ones (25/15 °C). Accessions from more arid climates released dormancy under higher experimental temperature alternations more than accessions originating from less arid environments. The plasticity of physical dormancy can probably distribute the germination through the year and act as a bet-hedging strategy in arid environments. On the other hand, a slight increase in physical dormancy was observed in accessions from environments with higher among-season temperature variation. Genome-wide association analysis identified 136 candidate genes related to secondary metabolite synthesis, hormone regulation, and modification of the cell wall. The activity of these genes might mediate seed coat permeability and, ultimately, imbibition and germination.

4.
PeerJ ; 7: e6263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30656074

RESUMO

BACKGROUND: Seed germination is one of the earliest key events in the plant life cycle. The timing of transition from seed to seedling is an important developmental stage determining the survival of individuals that influences the status of populations and species. Because of wide geographical distribution and occurrence in diverse habitats, wild pea (Pisum sativum subsp. elatius) offers an excellent model to study physical type of seed dormancy in an ecological context. This study addresses the gap in knowledge of association between the seed dormancy, seed properties and environmental factors, experimentally testing oscillating temperature as dormancy release clue. METHODS: Seeds of 97 pea accessions were subjected to two germination treatments (oscillating temperatures of 25/15 °C and 35/15 °C) over 28 days. Germination pattern was described using B-spline coefficients that aggregate both final germination and germination speed. Relationships between germination pattern and environmental conditions at the site of origin (soil and bioclimatic variables extracted from WorldClim 2.0 and SoilGrids databases) were studied using principal component analysis, redundancy analysis and ecological niche modelling. Seeds were analyzed for the seed coat thickness, seed morphology, weight and content of proanthocyanidins (PA). RESULTS: Seed total germination ranged from 0% to 100%. Cluster analysis of germination patterns of seeds under two temperature treatments differentiated the accessions into three groups: (1) non-dormant (28 accessions, mean germination of 92%), (2) dormant at both treatments (29 acc., 15%) and (3) responsive to increasing temperature range (41 acc., with germination change from 15 to 80%). Seed coat thickness differed between groups with dormant and responsive accessions having thicker testa (median 138 and 140 µm) than non-dormant ones (median 84 mm). The total PA content showed to be higher in the seed coat of dormant (mean 2.18 mg g-1) than those of non-dormant (mean 1.77 mg g-1) and responsive accessions (mean 1.87 mg g-1). Each soil and bioclimatic variable and also germination responsivity (representing synthetic variable characterizing germination pattern of seeds) was spatially clustered. However, only one environmental variable (BIO7, i.e., annual temperature range) was significantly related to germination responsivity. Non-dormant and responsive accessions covered almost whole range of BIO7 while dormant accessions are found in the environment with higher annual temperature, smaller temperature variation, seasonality and milder winter. Ecological niche modelling showed a more localized potential distribution of dormant group. Seed dormancy in the wild pea might be part of a bet-hedging mechanism for areas of the Mediterranean basin with more unpredictable water availability in an otherwise seasonal environment. This study provides the framework for analysis of environmental aspects of physical seed dormancy.

6.
PLoS One ; 13(3): e0194056, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29579076

RESUMO

Knowledge of current genetic diversity and mating systems of crop wild relatives (CWR) in the Fertile Crescent is important in crop genetic improvement, because western agriculture began in the area after the cold-dry period known as Younger Dryas about 12,000 years ago and these species are also wild genepools of the world's most important food crops. Wild pea (Pisum sativum subsp. elatius) is an important source of genetic diversity for further pea crop improvement harbouring traits useful in climate change context. The genetic structure was assessed on 187 individuals of Pisum sativum subsp. elatius from fourteen populations collected in the northern part of the Fertile Crescent using 18,397 genome wide single nucleotide polymorphism DARTseq markers. AMOVA showed that 63% of the allelic variation was distributed between populations and 19% between individuals within populations. Four populations were found to contain admixed individuals. The observed heterozygosity ranged between 0.99 to 6.26% with estimated self-pollination rate between 47 to 90%. Genetic distances of wild pea populations were correlated with geographic but not environmental (climatic) distances and support a mixed mating system with predominant self-pollination. Niche modelling with future climatic projections showed a local decline in habitats suitable for wild pea, making a strong case for further collection and ex situ conservation.


Assuntos
Pisum sativum/genética , Polinização/genética , Alelos , Variação Genética/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA