RESUMO
Human hepatocytes show marked differences in cell size, gene expression, and function throughout the liver lobules, an arrangement termed liver zonation. However, it is not clear if these zonal size differences, and the associated phenotypic differences, are retained in isolated human hepatocytes, the "gold standard" for in vitro studies of human liver function. Here, we therefore explored size differences among isolated human hepatocytes and investigated whether separation by size can be used to study liver zonation in vitro. We used counterflow centrifugal elutriation to separate cells into different size fractions and analyzed them with label-free quantitative proteomics, which revealed an enrichment of 151 and 758 proteins (out of 5163) in small and large hepatocytes, respectively. Further analysis showed that protein abundances in different hepatocyte size fractions recapitulated the in vivo expression patterns of previously described zonal markers and biological processes. We also found that the expression of zone-specific cytochrome P450 enzymes correlated with their metabolic activity in the different fractions. In summary, our results show that differences in hepatocyte size matches zonal expression patterns, and that our size fractionation approach can be used to study zone-specific liver functions in vitro.
Assuntos
Diferenciação Celular/fisiologia , Dissecação , Hepatócitos/metabolismo , Fígado/citologia , Sistema Enzimático do Citocromo P-450/metabolismo , Dissecação/métodos , Expressão Gênica/fisiologia , Humanos , Fígado/metabolismo , Fígado/cirurgiaRESUMO
Bile salt export pump (BSEP) inhibition has emerged as an important mechanism that may contribute to the initiation of human drug-induced liver injury (DILI). Proactive evaluation and understanding of BSEP inhibition is recommended in drug discovery and development to aid internal decision making on DILI risk. BSEP inhibition can be quantified using in vitro assays. When interpreting assay data, it is important to consider in vivo drug exposure. Currently, this can be undertaken most effectively by consideration of total plasma steady state drug concentrations (Css,plasma ). However, because total drug concentrations are not predictive of pharmacological effect, the relationship between total exposure and BSEP inhibition is not causal. Various follow-up studies can aid interpretation of in vitro BSEP inhibition data and may be undertaken on a case-by-case basis. BSEP inhibition is one of several mechanisms by which drugs may cause DILI, therefore, it should be considered alongside other mechanisms when evaluating possible DILI risk.
Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Bile/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Fígado/efeitos dos fármacos , Moduladores de Transporte de Membrana/toxicidade , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/química , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Simulação por Computador , Desenho Assistido por Computador , Desenho de Fármacos , Humanos , Técnicas In Vitro , Fígado/metabolismo , Moduladores de Transporte de Membrana/química , Modelos Biológicos , Conformação Proteica , Medição de Risco , Fatores de Risco , Relação Estrutura-AtividadeRESUMO
Drug transport and drug-drug interactions (DDI) with human ABC transporters are generally investigated in mammalian cell lines or inverted membrane vesicles from insect cells (Sf9) overexpressing the transporter of interest. In this study, we instead used membrane vesicles from human embryonic kidney cells (HEK293) overexpressing wild type MDR1/Pgp (ABCB1), BCRP (ABCG2), and MRP2 (ABCC2) with the aim to study the concentration dependent inhibition of shared and prototypic probe substrates. We first investigated 15 substrates and identified estrone-17-beta-glucorinide (E17G) as shared substrate. Nine specific and general inhibitors were then studied using E17G and prototypic probe substrates. The results were compared with those previously obtained in Sf9 vesicles and cell lines of canine (MDCKII) and human (Saos-2) origin. For the majority of inhibitors, Ki values differed <10-fold between E17G and probe substrates. Significant differences in Ki values were observed for about one third of the inhibitors. The transport inhibition potencies in HEK293 vesicles were in good agreement with those obtained in Sf9 vesicles. Large differences were found in the inhibition potencies observed in the vesicular systems compared to the cellular systems. Nevertheless, the rank order correlations between the different experimental systems were generally good. Our study provides further information on substrate dependent inhibition of ABC-transporters, and suggests that simple ranking of compounds can be used as a tier one approach to bridge results obtained in different experimental systems.
Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Estrona/análogos & derivados , Glucuronídeos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Transporte Biológico , Linhagem Celular , Cães , Estrona/química , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Células Sf9 , Relação Estrutura-AtividadeRESUMO
Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results. These more physiologically relevant culture systems hold potential for extending metabolic competence of primary hepatocyte cultures as well. In this investigation, we used computational fluid dynamics to determine the optimal design of a flow-based hepatocyte culture system for evaluating chemical metabolism in vitro. The main design goals were (1) minimization of shear stress experienced by the cells to maximize viability, (2) rapid establishment of a uniform distribution of test compound in the chamber, and (3) delivery of sufficient oxygen to cells to support aerobic respiration. Two commercially available flow devices - RealBio® and QuasiVivo® (QV) - and a custom developed fluidized bed bioreactor were simulated, and turbulence, flow characteristics, test compound distribution, oxygen distribution, and cellular oxygen consumption were analyzed. Experimental results from the bioreactors were used to validate the simulation results. Our results indicate that maintaining adequate oxygen supply is the most important factor to the long-term viability of liver bioreactor cultures. Cell density and system flow patterns were the major determinants of local oxygen concentrations. The experimental results closely corresponded to the in silico predictions. Of the three bioreactors examined in this study, we were able to optimize the experimental conditions for long-term hepatocyte cell culture using the QV bioreactor. This system facilitated the use of low system volumes coupled with higher flow rates. This design supports cellular respiration by increasing oxygen concentrations in the vicinity of the cells and facilitates long-term kinetic studies of low clearance test compounds. These two goals were achieved while simultaneously keeping the shear stress experienced by the cells within acceptable limits.
RESUMO
A comprehensive analysis was performed to investigate how inhibition of the human bile salt export pump (BSEP/ABCB11) relates to clinically observed drug-induced liver injury (DILI). Inhibition of taurocholate (TA) transport was investigated in BSEP membrane vesicles for a data set of 250 compounds, and 86 BSEP inhibitors were identified. Structure-activity modeling identified BSEP inhibition to correlate strongly with compound lipophilicity, whereas positive molecular charge was associated with a lack of inhibition. All approved drugs in the data set (n = 182) were categorized according to DILI warnings in drug labels issued by the Food and Drug Administration, and a strong correlation between BSEP inhibition and DILI was identified. As many as 38 of the 61 identified BSEP inhibitors were associated with severe DILI, including 9 drugs not previously linked to BSEP inhibition. Further, among the tested compounds, every second drug associated with severe DILI was a BSEP inhibitor. Finally, sandwich-cultured human hepatocytes (SCHH) were used to investigate the relationship between BSEP inhibition, TA transport, and clinically observed DILI in detail. BSEP inhibitors associated with severe DILI greatly reduced the TA canalicular efflux, whereas BSEP inhibitors with less severe or no DILI resulted in weak or no reduction of TA efflux in SCHH. This distinction illustrates the usefulness of SCHH in refined analysis of BSEP inhibition. In conclusion, BSEP inhibition in membrane vesicles was found to correlate to DILI severity, and altered disposition of TA in SCHH was shown to separate BSEP inhibitors associated with severe DILI from those with no or mild DILI.
Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Idoso , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas , Feminino , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
PURPOSE: To study the inhibition patterns of the three major human ABC transporters P-gp (ABCB1), BCRP (ABCG2) and MRP2 (ABCC2), using a dataset of 122 structurally diverse drugs. METHODS: Inhibition was investigated in cellular and vesicular systems over-expressing single transporters. Computational models discriminating either single or general inhibitors from non-inhibitors were developed using multivariate statistics. RESULTS: Specific (n = 23) and overlapping (n = 19) inhibitors of the three ABC transporters were identified. GF120918 and Ko143 were verified to specifically inhibit P-gp/BCRP and BCRP in defined concentration intervals, whereas the MRP inhibitor MK571 was revealed to inhibit all three transporters within one log unit of concentration. Virtual docking experiments showed that MK571 binds to the ATP catalytic site, which could contribute to its multi-specific inhibition profile. A computational model predicting general ABC inhibition correctly classified 80% of both ABC transporter inhibitors and non-inhibitors in an external test set. CONCLUSIONS: The inhibitor specificities of P-gp, BCRP and MRP2 were shown to be highly overlapping. General ABC inhibitors were more lipophilic and aromatic than specific inhibitors and non-inhibitors. The identified specific inhibitors can be used to delineate transport processes in complex experimental systems, whereas the multi-specific inhibitors are useful in primary ABC transporter screening in drug discovery settings.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Simulação por Computador , Dicetopiperazinas , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Propionatos/farmacologia , Quinolinas/farmacologia , Tetra-Hidroisoquinolinas/farmacologiaRESUMO
The liver-specific organic cation transport protein (OCT1; SLC22A1) transports several cationic drugs including the antidiabetic drug metformin and the anticancer agents oxaliplatin and imatinib. In this study, we explored the chemical space of registered oral drugs with the aim of studying the inhibition pattern of OCT1 and of developing predictive computational models of OCT1 inhibition. In total, 191 structurally diverse compounds were examined in HEK293-OCT1 cells. The assay identified 47 novel inhibitors and confirmed 15 previously known inhibitors. The enrichment of OCT1 inhibitors was seen in several drug classes including antidepressants. High lipophilicity and a positive net charge were found to be the key physicochemical properties for OCT1 inhibition, whereas a high molecular dipole moment and many hydrogen bonds were negatively correlated to OCT1 inhibition. The data were used to generate OPLS-DA models for OCT1 inhibitors; the final model correctly predicted 82% of the inhibitors and 88% of the noninhibitors of the test set.
Assuntos
Desenho de Fármacos , Fígado/química , Transportador 1 de Cátions Orgânicos/antagonistas & inibidores , Preparações Farmacêuticas/química , Linhagem Celular , Simulação por Computador , Perfilação da Expressão Gênica , Humanos , Ligação de Hidrogênio , Peso Molecular , Transportador 1 de Cátions Orgânicos/química , Transportador 1 de Cátions Orgânicos/genética , Valor Preditivo dos Testes , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Relação Estrutura-AtividadeRESUMO
The chemical space of registered oral drugs was explored for inhibitors of the human multidrug-resistance associated protein 2 (MRP2; ABCC2), using a data set of 191 structurally diverse drugs and drug-like compounds. The data set included a new reference set of 75 compounds, for studies of hepatic drug interactions with transport proteins, CYP enzymes, and compounds associated with liver toxicity. The inhibition of MRP2-mediated transport of estradiol-17beta-D-glucuronide was studied in inverted membrane vesicles from Sf9 cells overexpressing human MRP2. A total of 27 previously unknown MRP2 inhibitors were identified, and the results indicate an overlapping but narrower inhibitor space for MRP2 compared with the two other major ABC efflux transporters P-gp (ABCB1) and BCRP (ABCG2). In addition, 13 compounds were shown to stimulate the transport of estradiol-17beta-D-glucuronide. The experimental results were used to develop a computational model able to discriminate inhibitors from noninhibitors according to their molecular structure, resulting in a predictive power of 86% for the training set and 72% for the test set. The inhibitors were in general larger and more lipophilic and presented a higher aromaticity than the noninhibitors. The developed computational model is applicable in an early stage of the drug discovery process and is proposed as a tool for prediction of MRP2-mediated hepatic drug interactions and toxicity.