Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Metab ; 69: 101689, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739969

RESUMO

OBJECTIVE: A fundamental difference between physiological and pharmacological studies in rats and humans is that withdrawal of blood from conscious rats necessitates restraint which inevitably inflicts a higher level of stress. We investigated the impact of handling on acute glucose regulation and secretion of glucoregulatory hormones in rats. METHODS: Fasted male Sprague Dawley rats (375-400 g, n = 11) were given an oral glucose tolerance test (OGTT) by gavage (2 g/kg). Blood was sampled frequently until 90 min after challenge by handheld sampling (HS) or by automated sampling (AS). In the HS experiment, blood was withdrawn by restraint and sublingual vein puncture; two weeks later, samples were obtained by AS through an implanted catheter in a carotid artery, allowing sampling without disturbing the animals. RESULTS: On the day of HS, post challenge glucose AUCs were ∼17% higher (P < 0.0001), despite gastric emptying (AUC) being reduced by ∼30% (P < 0.0001). Plasma insulin AUC was 3.5-fold lower (P < 0.001), and glucose-dependent insulinotropic peptide (GIP) AUC was reduced by ∼36% but glucagon-like peptide-1 concentrations were not affected. Glucagon concentrations were higher both before and after challenge (fold difference in AUCs = 3.3). Adrenocorticotropin (ACTH) and corticosterone AUCs were 2.4-fold and 3.6-fold higher (P < 0.001), respectively. DISCUSSION AND CONCLUSION: Our study highlights that sampling of blood from conscious rats by sublingual vein puncture inflicts stress which reduces glucose absorption and glucose tolerance and blunts secretion of insulin and GIP. As blood sampling in humans are less stressful, standard procedures of conducting OGTT's in rats by HS presumably introduce an interspecies difference that may have negative consequences for translatability of test results.


Assuntos
Glicemia , Glucagon , Humanos , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Insulina , Glucose/farmacologia , Polipeptídeo Inibidor Gástrico/farmacologia
2.
Commun Biol ; 5(1): 946, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088386

RESUMO

Most metabolic studies on mice are performed at room temperature, although under these conditions mice, unlike humans, spend considerable energy to maintain core temperature. Here, we characterize the impact of housing temperature on energy expenditure (EE), energy homeostasis and plasma concentrations of appetite- and glucoregulatory hormones in normal-weight and diet-induced obese (DIO) C57BL/6J mice fed chow or 45% high-fat-diet, respectively. Mice were housed for 33 days at 22, 25, 27.5, and 30 °C in an indirect-calorimetry-system. We show that energy expenditure increases linearly from 30 °C towards 22 °C and is ~30% higher at 22 °C in both mouse models. In normal-weight mice, food intake counter-balances EE. In contrast, DIO mice do not reduce food intake when EE is lowered. By end of study, mice at 30 °C, therefore, had higher body weight, fat mass and plasma glycerol and triglycerides than mice at 22 °C. Dysregulated counterbalancing in DIO mice may result from increased pleasure-based eating.


Assuntos
Ingestão de Energia , Habitação , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Temperatura
3.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187898

RESUMO

An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic-pituitary-adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15-/- mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.


Assuntos
Fator 15 de Diferenciação de Crescimento/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Animais , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Glucocorticoides/metabolismo , Fator 15 de Diferenciação de Crescimento/administração & dosagem , Humanos , Lipopolissacarídeos , Camundongos , Ratos , Tunicamicina/farmacologia
4.
Nucleic Acids Res ; 36(Web Server issue): W163-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18440976

RESUMO

DNA and RNA oligomers are used in a myriad of diverse biological and biochemical experiments. These oligonucleotides are designed to have unique biophysical, chemical and hybridization properties. We have created an integrated set of bioinformatics tools that predict the properties of native and chemically modified nucleic acids and assist in their design. Researchers can select PCR primers, probes and antisense oligonucleotides, find the most suitable sequences for RNA interference, calculate stable secondary structures, and evaluate the potential for two sequences to interact. The latest, most accurate thermodynamic algorithms and models are implemented. This free software is available at http://www.idtdna.com/SciTools/SciTools.aspx.


Assuntos
Oligonucleotídeos/química , Software , Primers do DNA/química , Internet , Conformação de Ácido Nucleico , Sondas de Oligonucleotídeos/química , Oligonucleotídeos Antissenso/química , RNA Interferente Pequeno/química
5.
J Endocrinol ; 190(3): 651-8, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17003266

RESUMO

Lipid accumulation in non-adipose tissues is strongly associated with the metabolic syndrome, possibly due to aberrant partitioning of intracellular fatty acids between storage and oxidation. In the present study, we administered the non-metabolizable fatty acid analog [9,10-(3)H]-(R)-2-bromopalmitate, and authentic (14)C-palmitate to conscious rats, in order to directly examine the initial intracellular fate of fatty acids in a range of insulin-sensitive tissues, including white and red muscles, liver, white adipose tissue, and heart. Rats were studied after administration of an oral glucose load to examine the effect of physiological elevation of glucose and insulin. The tracer results showed that glucose administration partitioned fatty acid toward storage in white muscle (storage:uptake ratios, vehicle vs glucose; 0.64 +/- 0.02 vs 0.92 +/- 0.09, P < 0.05), and in liver (0.66 +/- 0.07 vs 0.98 +/- 0.04, P < 0.05), but not in red muscle (1.18 +/- 0.07 vs 1.36 +/- 0.11, P = not significant). These results demonstrate the physiological relevance of the so-called 'reverse' Randle cycle, but surprisingly show that it may be more important in white rather than oxidative red muscle.


Assuntos
Ácidos Graxos/metabolismo , Glucose/administração & dosagem , Resistência à Insulina , Fibras Musculares de Contração Rápida/metabolismo , Tecido Adiposo/metabolismo , Administração Oral , Animais , Glicemia/análise , Isótopos de Carbono , Ácidos Graxos não Esterificados/sangue , Teste de Tolerância a Glucose , Glicerol/sangue , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Taxa de Depuração Metabólica , Miocárdio/metabolismo , Oxirredução , Palmitatos/administração & dosagem , Palmitatos/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA