Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(10): 10I146, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399731

RESUMO

The Cherenkov mechanism used in Gas Cherenkov Detectors (GCDs) is exceptionally fast. However, the temporal resolution of GCDs, such as the Gamma Reaction History diagnostic at the National Ignition Facility (NIF), has been limited by the current state-of-the-art photomultiplier tube technology to ∼100 ps. The soon-to-be deployed Pulse Dilation Photomultiplier Tube (PD-PMT) at NIF will allow for temporal resolution comparable to that of the gas cell or ∼10 ps. Enhanced resolution will contribute to the quest for ignition in a crucial way through precision measurements of reaction history and ablator areal density (ρR) history, leading to better constrained models. Features such as onset of alpha heating, shock reverberations, and burn truncation due to dynamically evolving failure modes may become visible for the first time. Test measurements of the PD-PMT at Atomic Weapons Establishment confirmed that design goals have been met. The PD-PMT provides dilation factors of 2 to 40× in 6 increments. The GCD-3 recently deployed at the NIF has been modified for coupling to a PD-PMT and will soon be making ultrafast measurements.

2.
Rev Sci Instrum ; 89(10): 10I148, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399772

RESUMO

Fusion reaction history and ablator areal density measurements for Inertial Confinement Fusion experiments at the National Ignition Facility are currently conducted using the Gamma Reaction History diagnostic (GRH_6m). Future Gas Cherenkov Detectors (GCDs) will ultimately provide ∼100x more sensitivity, reduce the effective temporal response from ∼100 to ∼10 ps, and lower the energy threshold from 2.9 to 1.8 MeV, relative to GRH_6m. The first phase toward next generation GCDs consisted of inserting the existing coaxial GCD-3 detector into a reentrant well which puts it within 4 m of the implosion. Reaction history and ablator gamma measurement results from this Phase I are discussed here. These results demonstrate viability for the follow-on Phases of (II) the use of a revolutionary new pulse-dilation photomultiplier tube to improve the effective measurement bandwidth by >10x relative to current PMT technology; and (III) the design of a NIF-specific "Super" GCD which will be informed by the assessment of the radiation background environment within the well described here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA