Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131433, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583846

RESUMO

Tannic acid (TA) exhibits low bioavailability in the gastrointestinal tract, limiting its benefits due to small amounts reaching the CNS. Thus, the objective of this study was to develop zein capsules and fibers by electrospraying/electrospinning for encapsulation of TA. Polymeric solutions were evaluated by electrical conductivity, density, and viscosity. In zein capsules, up to 2 % TA was added, and in fibers, up to 1 % TA was added. Zein capsule and fiber with TA were evaluated by morphology, size distribution, encapsulation efficiency, thermal and thermogravimetric properties, and functional groups. Zein capsule with 1.5 % TA was evaluated in astrocyte culture for cytotoxicity and antioxidant activity. TA zein capsules and fibers exhibited high encapsulation efficiency and homogeneous morphology. TA encapsulated in zein presented higher thermal stability than free TA. TA zein capsule did not present toxicity and elicited antioxidant action in lipopolysaccharide-induced astrocyte culture. Capsules and fibers were successfully produced by electrospraying/electrospinning techniques.


Assuntos
Antioxidantes , Astrócitos , Lipopolissacarídeos , Polifenóis , Taninos , Zeína , Taninos/química , Taninos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Zeína/química , Antioxidantes/farmacologia , Antioxidantes/química , Lipopolissacarídeos/farmacologia , Animais , Escherichia coli/efeitos dos fármacos , Ratos , Células Cultivadas , Cápsulas
2.
Mol Neurobiol ; 61(10): 8234-8252, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38483655

RESUMO

The aim of this study was to investigate the antiglioma effect of Cecropia pachystachya Trécul (CEC) leaves extract against C6 and U87 glioblastoma (GB) cells and in a rat preclinical GB model. The CEC extract reduced in vitro cell viability and biomass. In vivo, the extract decreased the tumor volume approximately 62%, without inducing systemic toxicity. The deficit in locomotion and memory and an anxiolytic-like behaviors induced in the GB model were minimized by CEC. The extract decreased the levels of reactive oxygen species, nitrites and thiobarbituric acid reactive substances and increased the activity of antioxidant enzymes in platelets, sera and brains of GB animals. The activity of NTPDases, 5'-nucleotidase and adenosine deaminase (ADA) was evaluated in lymphocytes, platelets and serum. In platelets, ATP and AMP hydrolysis was reduced and hydrolysis of ADP and the activity of ADA were increased in the control, while in CEC-treated animals no alteration in the hydrolysis of ADP was detected. In serum, the reduction in ATP hydrolysis was reversed by CEC. In lymphocytes, the increase in the hydrolysis of ATP, ADP and in the activity of ADA observed in GB model was altered by CEC administration. The observed increase in IL-6 and decrease in IL-10 levels in the serum of GB animals was reversed by CEC. These results demonstrate that CEC extract is a potential complementary treatment to GB, decreasing the tumor size, while modulating aspects of redox and purinergic systems.


Assuntos
Cecropia , Glioma , Extratos Vegetais , Folhas de Planta , Ratos Wistar , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Glioma/tratamento farmacológico , Glioma/patologia , Linhagem Celular Tumoral , Cecropia/química , Masculino , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/metabolismo , Ratos , Modelos Animais de Doenças , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico
3.
Nat Prod Res ; : 1-6, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538563

RESUMO

Phenolic compounds were extracted from biphasic olive pomace and their biological potential was characterised. Two different extracts were prepared, E1 (40% methanol) and E2 (80% methanol), both subjected to agitation (180 min) and 70 °C. LC-ESI-qTOF-MS was used for individual quantification of the extracted phenolic compounds. The antioxidant activity was determined using different methods, including nitric oxide, DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radical. The enzymes α-amylase and α-glucosidase were used to evaluate the antihyperglycemic potential and sulforhodamine B and MTT (tetrazolium salt) for antitumor activity. To evaluate the antimicrobial activity, minimum inhibitory concentration and minimum bactericidal concentration of the extracts, the disc diffusion technique was used. Among the phenolic compounds present, tyrosol was highlighted in both extracts, as well as the anti-hyperglycemic effects, antitumor action and antioxidant activity. The antimicrobial activity found in the extracts was considered moderate to weak.

4.
Appl Biochem Biotechnol ; 195(7): 4011-4035, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36652091

RESUMO

Endophytic fungi are important sources of anticancer compounds. An endophytic fungus was isolated from the medicinal plant Achyrocline satureioides, and molecularly identified as Biscogniauxia sp. (family Xylariaceae) based on partial nucleotide sequences of the internal transcribed spacer genomic region (GenBank Accession No. ON257911). The chemical characterization and cytotoxic properties of secondary metabolites produced by Biscogniauxia sp. were evaluated in a human melanoma cell line (A375). The fungus was grown in potato-dextrose liquid medium for 25 days, and the extracted compounds were subjected to solid-phase fractionation to obtain the purified FDCM fraction, for which the metabolites were elucidated via ultra-performance chromatography coupled to a mass spectrometer. In the present study, 17 secondary metabolites of Biscogniauxia sp., including nine polyketide derivatives, five terpenoids, and three isocoumarins, were putatively identified. This is the first study to report of the ability of Biscogniauxia sp. in the production of isocoumarin orthosporin; the terpenoids nigriterpene A and 10-xylariterpenoid; the polyketide derivatives daldinin C, 7'dechloro-5'-hydroxygriseofulvin, daldinone D, Sch-642305, curtachalasin A, cytochalasin E, epoxycytochalasins Z8, Z8 isomer, and Z17. Furthermore, this study has reported the biosynthesis of Sch-642305 by a Xylariaceae fungus for the first time. FDCM significantly reduced the viability and proliferation of human melanoma cells at half-maximal inhibitory concentrations ​​of 10.34 and 6.89 µg/mL, respectively, and induced late apoptosis/necrosis and cell cycle arrest in G2/M phase after 72 h of treatment. Given its ability to produce unique metabolites with promising cytotoxic effects, Biscogniauxia sp. of A. satureioides may be a reservoir of compounds with important therapeutic applications.


Assuntos
Achyrocline , Antineoplásicos , Melanoma , Humanos , Achyrocline/química , Extratos Vegetais/química , Antineoplásicos/farmacologia , Linhagem Celular , Melanoma/tratamento farmacológico , Fungos
5.
Metab Brain Dis ; 38(1): 223-232, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308587

RESUMO

High levels of methionine (Met) and its metabolites, such as methionine sulfoxide (MetO), found in hypermethioninemia, can be detrimental to the body; however, the underlying mechanisms are still uncertain. Using a recently standardized protocol, the aim of this study was to investigate the effects of chronic administration of Met and/or MetO on parameters of oxidative damage in the total brain, liver, and kidney of young mice. Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35-1.2 g/kg body weight and 0.09-0.3 g/kg body weight, respectively, from the 10th-38th day post-birth, while the control group was treated with saline solution. Results showed that Met and/or MetO caused an increase in reactive oxygen species (ROS) and lipoperoxidation, along with a reduction of superoxide dismutase (SOD) and catalase (CAT) activities in the brain. In the liver, Met and/or MetO enhanced ROS and nitrite levels, and reduced SOD, CAT, and delta aminolevulinic dehydratase activities. The effects on the kidney were an increase in ROS production and SOD activity, and a reduction in thiol content and CAT activity. These data demonstrated the contribution of redox imbalance to the systemic changes found in patients with hypermethioninemia. In conclusion, our findings may help future studies to better understand the pathophysiological mechanisms of hypermethioninemia as well as contribute to the search for new therapeutic agents for this pathology.


Assuntos
Antioxidantes , Estresse Oxidativo , Ratos , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Wistar , Catalase/metabolismo , Fígado/metabolismo , Superóxido Dismutase/metabolismo , Rim/metabolismo , Encéfalo/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacologia , Peso Corporal
6.
Cell Mol Neurobiol ; 43(1): 283-297, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35031909

RESUMO

Astrocytes play multiple important roles in brain physiology. However, depending on the stimuli, astrocytes may exacerbate inflammatory reactions, contributing to the development and progression of neurological diseases. Therefore, therapies targeting astrocytes represent a promising area for the development of new brain drugs. Thiazolidinones are heterocyclic compounds that have a sulfur and nitrogen atom and a carbonyl group in the ring and represent a class of compounds of great scientific interest due to their pharmacological properties. The aim of this study was to investigate the effect of 3-(3-(diethylamino)propyl)-2-(4-(methylthio)phenyl)thiazolidin-4-one (DS27) on cell proliferation and morphology, oxidative stress parameters, activity of the enzymes ectonucleotidases and acetylcholinesterase (AChE) and interleukin 6 (IL-6) levels in primary astrocyte cultures treated with lipopolysaccharide (LPS), to model neuroinflammation. The astrocyte culture was exposed to LPS (10 µg/ml) for 3 h and subsequently treated with compound DS27 for 24 and 48 h (concentrations ranging to 10-100 µM). LPS induced an increase in astrocyte proliferation, AChE activity, IL-6 levels, oxidative damage, ATP and ADP and a reduction in AMP hydrolysis in rat primary astrocyte cultures. DS27 treatment was effective in reversing these alterations induced by LPS. Our findings demonstrated that DS27 is able to modulate cholinergic and purinergic signaling, redox status, and the levels of pro-inflammatory cytokines in LPS-induced astrocyte damage. These glioprotective effects of DS27 may be very important for improving neuroinflammation, which is associated with many brain diseases.


Assuntos
Astrócitos , Lipopolissacarídeos , Ratos , Animais , Astrócitos/metabolismo , Lipopolissacarídeos/farmacologia , Acetilcolinesterase/metabolismo , Nucleotídeos de Adenina/efeitos adversos , Interleucina-6 , Doenças Neuroinflamatórias , Hidrólise , Estresse Oxidativo , Inflamação/tratamento farmacológico , Células Cultivadas
7.
J Nutr Biochem ; 110: 109156, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36255060

RESUMO

Glioblastoma (GBM) is the deadliest primary brain tumor in adults due to the high rate of relapse with current treatment. Therefore, the search for therapeutic alternatives is urgent. Gallic acid (GA), a potent natural antioxidant, has antitumor and modulatory actions on purinergic signaling. In this study, we investigated the cytotoxic effects of GA on the rat GBM (C6) cell line and on astrocyte culture and analyzed its role in regulating oxidative stress and purinergic enzymes involved in GBM proliferation. Cells were exposed to GA from 50 to 400 µM for 24 and/or 48 h. Next, the effect of GA was evaluated in the preclinical model of GBM. Wistar rats were treated with 50 or 100 mg/kg of GA for 15 days, and cerebral and systemic redox status and degradation of adenine nucleotides and nucleosides in circulating platelets, lymphocytes, and serum were evaluated. Our results demonstrated that GA has selective anti-glioma activity in vitro, without inducing cytotoxicity in astrocyte. Furthermore, GA prevented oxidative stress and changes in the hydrolysis of nucleotides in GBM cells. The anti-glioma effect was also observed in vivo, as GA reduced tumor volume by 90%. Interestingly, GA decreased the oxidative damage induced by a tumor in the brain, serum, and platelets, and, also prevented changes in the degradation of nucleotides and nucleosides in lymphocytes, platelets, and serum. These results indicate, for the first time, the therapeutic potential of GA in a preclinical model of GBM, whose effects may be related to its role in redox and purinergic modulation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Ratos , Glioblastoma/metabolismo , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Ratos Wistar , Glioma/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Oxirredução , Homeostase , Nucleotídeos/metabolismo , Linhagem Celular Tumoral
8.
Metab Brain Dis ; 37(6): 2053-2059, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616801

RESUMO

The aim of the present study was to evaluate the anti-glioma activity of 3-(4-fluorobenzyl)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione (AV23) in a preclinical model of glioblastoma, as well as behavioral parameters and toxicological profile. The implantation of C6 cells in the left striatum of male Wistar rats was performed by stereotaxic surgery. After recovery, animals were treated with vehicle (canola oil) or AV23 (10 mg/kg/day) intragastrically for 15 days. It was found that AV23 reduced tumor volume by 90%. Serum biochemical parameters such as triglycerides, cholesterol, HDL-cholesterol, LDL-cholesterol, albumin, aspartate aminotransferase, urea, creatinine and total proteins were not changed; however, there was a slight increase in alanine aminotransferase. The compound AV23 reverted the hypoglycemia and the reduction in body weight caused by glioblastoma. Additionally, AV23 was able to revert the reduction of locomotion caused by the tumor implantation. Therefore, the compound AV23 can be considered a promising candidate in the treatment of glioblastoma.


Assuntos
Glioblastoma , Tiazolidinedionas , Animais , Glioblastoma/tratamento farmacológico , Masculino , Ratos , Ratos Wistar , Tiazolidinas
9.
Neurochem Res ; 47(6): 1541-1552, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35178643

RESUMO

Glioblastoma (GB) is a highly aggressive and invasive brain tumor; its treatment remains palliative. Tannic acid (TA) is a polyphenol widely found in foods and possesses antitumor and neuroprotective activities. This study aimed to investigate the effect of TA on oxidative stress parameters and the activity of ectonucleotidases in the serum, platelets, and lymphocytes and/or in the brain of rats with preclinical GB. Rats with GB were treated intragastrically with TA (50 mg/kg/day) for 15 days or with a vehicle. In the platelets of the animals with glioma, the adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolysis and the catalase (CAT) activity decreased. Besides, the adenosine diphosphate (ADP) hydrolysis, adenosine (Ado) deamination, and the reactive oxygen species (ROS) and nitrite levels were increased in glioma animals; however, TA reversed ROS and nitrite levels and AMP hydrolysis alterations. In lymphocytes from animals with glioma, the ATP and ADP hydrolysis, as well as Ado deamination were increased; TA treatment countered this increase. In the brain of the animals with glioma, the ROS, nitrite, and thiobarbituric acid reactive substance (TBARS) levels increased and the thiol (SH) levels and CAT and superoxide dismutase (SOD) activities were decreased; TA treatment decreased the ROS and TBARS levels and restored the SOD activity. In the serum of the animals with glioma, the ATP hydrolysis decreased; TA treatment restored this parameter. Additionally, the ROS levels increased and the SH and SOD activity decreased by glioma implant; TA treatment enhanced nitrite levels and reversed SOD activity. Altogether, our results suggest that TA is an important target in the treatment of GB, as it modulates purinergic and redox systems.


Assuntos
Glioblastoma , Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Glioblastoma/tratamento farmacológico , Nitritos , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio , Superóxido Dismutase , Taninos/farmacologia , Taninos/uso terapêutico , Substâncias Reativas com Ácido Tiobarbitúrico
10.
Metab Brain Dis ; 37(3): 835-847, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35043268

RESUMO

Bipolar disorder (BD) is a psychiatric disease characterized by mood episodes. Blueberry is rich in bioactive compounds and shows excellent therapeutic potential against chronic diseases. The aim of this study was to evaluate the effects of blueberry extract on behavior, energetic metabolism, Ca2+-ATPase activity, and levels of brain-derived neurotrophic factor (BDNF) in the cerebral cortex and hippocampus of rats submitted to an animal model of mania induced by ketamine. Vehicle, lithium (45 mg/kg, twice a day), or blueberry extract (200 mg/kg), was orally administered to Wistar rats for 14 days. Ketamine (25 mg/kg) or vehicle was administered intraperitoneally, once a day, between the 8th and 14th day. On the 15th day, animals received ketamine or vehicle and were subjected to the open field test. Our results demonstrated that the administration of lithium and blueberry extract prevented ketamine-induced hyperlocomotion (P < 0.01). Blueberry extract attenuated the ketamine-induced reduction in the activity of complex I in the cerebral cortex (P < 0.05). Additionally, the administration of ketamine reduced the activities of complexes I and IV (P < 0.05) and citrate synthase in the hippocampus (P < 0.01). However, blueberry extract attenuated the inhibition in the activity of complex IV (P < 0.01). Furthermore, ketamine reduced the Ca2+-ATPase activity in the cerebral cortex and hippocampus (P < 0.05); however, blueberry extract prevented the change in the cerebral cortex (P < 0.05). There were no significant alterations in the levels of BDNF (P > 0.05). In conclusion, this suggested that the blueberry extract can serve as a potential therapeutic strategy for studies searching for novel therapeutic alternatives for BD patients.


Assuntos
Mirtilos Azuis (Planta) , Ketamina , Adenosina Trifosfatases/metabolismo , Animais , Comportamento Animal , Mirtilos Azuis (Planta)/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Ketamina/farmacologia , Mania , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar
11.
Metab Brain Dis ; 37(2): 439-449, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748129

RESUMO

The aim of this study was to investigate the anticancer potential of blueberry extract (Vaccinium virgatum) against a C6 rat glioma lineage. Cultures of the C6 cells were exposed to blueberry extract at concentrations of 50 to 600 µg/mL for 12, 24, 48, or 72 h and then evaluated for cell viability, proliferation, migration, colony formation and oxidative stress. We also evaluated the effects of blueberry extract on primary rat cortical astrocytes. Our results show that treatment with blueberry extract did not alter the viability or proliferation of normal primary astrocytes but it did significantly reduce the viability in 21.54 % after 48 h and proliferation in 8.59 % after 24 h of C6 cells at 200 µg/mL. We also observed a reduction in the size of the colonies of 29.99 % at 100 µg/mL when compared to the control cells and cell migration was also reduced at 50 µg/mL. After 72 h, there was a reduction in the reactive oxygen species levels ranging from 46.26 to 34.73 %, in addition to a 380.2 % increase in total thiol content. Superoxide dismutase, catalase, and glutathione S-transferase activities were also enhanced when compared to the control. Taken together this data suggests that blueberry extract exerts some selective anticancer activity in C6 glioma cells.


Assuntos
Mirtilos Azuis (Planta) , Glioma , Animais , Antioxidantes/farmacologia , Glioma/tratamento farmacológico , Oxirredução , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos
12.
Cell Biochem Biophys ; 79(4): 873-885, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34176101

RESUMO

Astrocytes play an important role in the central nervous system function and may contribute to brain plasticity response during static magnetic fields (SMF) brain therapy. However, most studies evaluate SMF stimulation in brain plasticity while few studies evaluate the consequences of SMF at the cellular level. Thus, we here evaluate the effects of SMF at 305 mT (medium-intensity) in a primary culture of healthy/normal cortical astrocytes obtained from neonatal (1 to 2-day-old) Wistar rats. After reaching confluence, cells were daily subjected to SMF stimulation for 5 min, 15 min, 30 min, and 40 min during 7 consecutive days. Oxidative stress parameters, cell cycle, cell viability, and mitochondrial function were analyzed. The antioxidant capacity was reduced in groups stimulated for 5 and 40 min. Although no difference was observed in the enzymatic activity of superoxide dismutase and catalase or the total thiol content, lipid peroxidation was increased in all stimulated groups. The cell cycle was changed after 40 min of SMF stimulation while 15, 30, and 40 min led cells to death by necrosis. Mitochondrial function was reduced after SMF stimulation, although imaging analysis did not reveal substantial changes in the mitochondrial network. Results mainly revealed that SMF compromised healthy astrocytes' oxidative status and viability. This finding reveals how important is to understand the SMF stimulation at the cellular level since this therapeutic approach has been largely used against neurological and psychiatric diseases.


Assuntos
Astrócitos , Sobrevivência Celular
13.
Int J Dev Neurosci ; 81(3): 285-289, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33606291

RESUMO

Hypermethioninemia is characterized by high plasma concentrations of methionine (Met) and its metabolites, such as methionine sulfoxide (MetO), and neurological changes, such as cerebral edema and cognitive deficits. The aim of this study was to analyze the redox status and acetylcholinesterase (AChE) activity in the hippocampus, striatum, and cerebellum of young Wistar rats subjected to an acute hypermethioninemia protocol. The animals received, by subcutaneous injection, a single dose of Met (0.4 g/kg), MetO (0.1 g/kg), and Met + MetO, and 1 or 3 hr after administration, the animals were euthanatized for brain structure obtaining. In the hippocampus, an increase in lipid peroxidation and glutathione peroxidase (GPx) activity was observed at 1 hr in the MetO and Met + MetO groups, and a reduction in the superoxide dismutase activity was found in the Met + MetO group. Met and/or MetO induced a decrease in the thiol content and GPx activity and enhanced the lipid peroxidation at 3 hr. In the striatum, a reduction in the thiol content and GPx activity, an increase in lipid peroxidation, and AChE activity were induced by Met and/or MetO at 1 or 3 hr. Additionally, in the cerebellum, an increase in the AChE in the MetO and Met + MetO groups 1 hr after administration was observed. These data help to better understand the pathophysiological mechanisms that underlie the neurological changes found in hypermethioninemia patients.


Assuntos
Acetilcolinesterase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Cerebelo/metabolismo , Corpo Estriado/metabolismo , Glicina N-Metiltransferase/deficiência , Hipocampo/metabolismo , Animais , Glicina N-Metiltransferase/metabolismo , Homeostase/fisiologia , Peroxidação de Lipídeos/fisiologia , Oxirredução , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
14.
Int J Dev Neurosci ; 81(2): 167-178, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33394512

RESUMO

Bipolar disorder is characterized by episodes of depression and mania, and oxidative stress has been associated with the observed neurochemical changes in this disease. We evaluated the effects of gallic acid on hyperlocomotion, acetylcholinesterase activity, and oxidative stress in an animal model of ketamine-induced mania. Rats were pretreated orally with vehicle, gallic acid (50 or 100 mg/kg), or lithium (45 mg/kg twice a day) for 14 days. Between days 8 and 14, the animals also received ketamine (25 mg/kg) or saline daily. On the 15th day, hyperlocomotion was assessed, following which the animals were euthanized, and brains were collected. Results showed that ketamine-induced hyperlocomotion and caused oxidative damage by increasing reactive oxygen species levels, lipid peroxidation, and nitrite levels, and decreasing the total thiol content and the activities of catalase, superoxide dismutase, and glutathione peroxidase in the brain. Pretreatment with gallic acid and lithium prevented hyperlocomotion and brain oxidative damage. Further, ketamine increased the acetylcholinesterase activity in the hippocampus and striatum, whereas gallic acid and lithium ameliorated this alteration. Thus, gallic acid may provide effective protection against manic-like behavior by reducing oxidative stress and preventing cholinergic signaling dysfunction in the brain regions involved in emotion regulation.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Ácido Gálico/uso terapêutico , Hipocampo/efeitos dos fármacos , Lítio/uso terapêutico , Mania/tratamento farmacológico , Animais , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Ácido Gálico/farmacologia , Hipocampo/metabolismo , Lítio/farmacologia , Masculino , Mania/metabolismo , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
15.
Med Chem ; 17(6): 601-610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32242786

RESUMO

BACKGROUND: Thiazolidinediones (TZDs) represent an important class of heterocyclic compounds that have versatile biological activities, including anticancer activity. Glioma is one of the most common primary brain tumors, and it is responsible for most of the deaths caused by primary brain tumors. In the present work, 2,4-thiazolidinediones were synthesized via a multicomponent microwave one-pot procedure. The cytotoxicity of compounds was analyzed in vitro using rat (C6) and mouse (GL261) glioblastoma cell lines and primary cultures of astrocytes. OBJECTIVE: This study aims to synthesize and characterize 2,4-thiazolidinediones and evaluate their antitumor activity. METHODS: TZDs were synthesized from three components: 2,4-thiazolidinedione, arene-aldehydes, and aryl chlorides. The reactions were carried out inside a microwave and monitored using thinlayer chromatography (TLC). Compounds were identified and characterized using gas chromatography coupled to mass spectrometry (CG-MS) and hydrogen (1H-NMR) and carbon nuclear magnetic resonance spectroscopy (13C-NMR). The antitumor activity was analyzed using the 3-(4,5- dimethyl)-2,5-diphenyltetrazolium bromide (MTT) reduction test, in which cell viability was verified in the primary cultures of astrocytes and in rat and mouse glioblastoma cells exposed to the synthesized compounds. The cytotoxicity of all derivatives was analyzed at the 100 µM concentration, both in astrocytes and in the mouse and rat glioblastoma cell lines. The compounds that showed the best results, 4CI and 4DI, were also tested at concentrations 25, 50, 100, 175, and 250 µM to obtain the IC50. RESULTS: Seventeen TZD derivatives were easily obtained through one-pot reactions in 40 minutes with yields ranging from 12% to 49%. All compounds were cytotoxic to both glioblastoma cell lines without being toxic to the astrocyte primary cell line at 100 µM, thus demonstrating a selective activity. Compounds 4CI and 4DI showed the best results in the C6 cells: IC50 of 28.51 µM and 54.26 µM, respectively. CONCLUSION: The compounds were not cytotoxic in astrocyte culture, demonstrating selectivity for malignant cells. Changes in both rings are important for anti-glioma activity in the cell lines tested. TZD 4CI had the best anti-glioma activity.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Glioma/patologia , Tiazolidinedionas/síntese química , Tiazolidinedionas/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Camundongos , Ratos , Tiazolidinedionas/química
16.
Neurochem Res ; 45(9): 2032-2043, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32500408

RESUMO

Depression is an emotional disorder that causes mental and physical changes, and has limited pharmacotherapy. Tannic acid (TA) is a polyphenol with previously described antioxidant and neuroprotective properties. The aim of this study was to evaluate the effects of TA on lipopolysaccharide (LPS)-induced depressive-like behavior, as well as oxidative stress parameters and TNF-α levels in the brains of mice. Animals were pretreated once daily, with TA (30 or 60 mg/kg), fluoxetine (20 mg/kg) or vehicle for 7 days. On the 7th day, the animals received a single injection of LPS (830 µg/kg). After 24 h, open field, forced swimming, tail suspension, and splash tests were conducted. The endotoxin induced depressive-like behavior in these mice and this was attenuated by TA. In the cerebral cortex, hippocampus, and striatum, LPS increased lipid peroxidation and reactive oxygen species production, and this was also prevented by TA administration. TA treatment also prevented a decrease in catalase activity within the striatum. Further, LPS administration caused increased levels of TNF-α in all brain structures, and this was prevented in the cortex by TA treatment. In conclusion, TA shows many neuroprotective properties, with demonstrated antioxidant, anti-inflammatory and antidepressant effects in this animal model of acute depressive-like behavior. Therefore, this compound could provide an alternative therapeutic approach for the treatment of depression.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Inflamação/tratamento farmacológico , Taninos/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Depressão/induzido quimicamente , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Camundongos , Teste de Campo Aberto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
17.
Colloids Surf B Biointerfaces ; 192: 111020, 2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32339867

RESUMO

Gliomas, intracranial malignant tumors, are aggressive, asymptomatic and difficult to treat due to their degree of infiltration, alternatives are needed to treat the disease. In this sense, natural compounds from the specialized metabolism of plants can act to control the disease. Glucosinolates and phenolic compounds, present in broccoli, have a potential to promote tumor cell death, however due to the low stability of these compounds, encapsulation becomes an alternative for their preservation. The objective was to encapsulate the broccoli extract by electrospraying and to evaluate its cytotoxicity in the primary cell culture of astrocytes and gliomas. The capsules were produced and characterized by encapsulation efficiency, functional groups, thermal stability and morphology, the capsule that presented the best parameters was used for the evaluation of cell cytotoxicity and antitumor activity. Capsules with equal or less than 50 % extract showed high encapsulation efficiency, high thermal stability and uniform morphology due to non-saturation of the active zein sites, which allowed a complete encapsulation of the added extract, as well as a greater protection of the compounds. The capsule with 50 % of the extract showed good results of the efficiency, morphology and thermal stability and was used to evaluate the antitumor activity, since the addition of extract in proportions greater than 60 % promoted saturation of the active sites and lower encapsulation efficiency, and directly affects the morphology and thermal stability. The encapsulated and unencapsulated extracts showed strong selective antitumor effect against glial tumor cells without toxicity to non-tumor cells.

18.
Int J Dev Neurosci ; 80(4): 287-302, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32181519

RESUMO

Autism is a neuropathology characterized by behavioral disorders. Considering that oxidative stress is involved in the pathophysiology of this disease, we evaluated the effects of quercetin, a flavonoid with antioxidant and neuroprotective properties, in an experimental model of autism induced by valproic acid (VPA). Twelve pregnant female rats were divided into four groups (control, quercetin, VPA, and VPA+quercetin). Quercetin (50 mg/kg) was administered orally to the animals from gestational days 6.5 to 18.5, and VPA (800 mg/kg) was administered orally in a single dosage on gestational day 12.5. Behavioral tests such as open field, social interaction, and tail flick nociceptive assays were performed on pups between 30 and 40 days old, after which the animals were euthanized. Cerebral cortex, hippocampus, striatum, and cerebellum were collected for evaluation of oxidative stress parameters. The pups exposed to VPA during the gestational period showed reduced weight gain, increased latency in the open field and tail flick tests, reduced time of social interaction, accompanied by changes in oxidative stress parameters mainly in the hippocampus and striatum. Prenatal treatment with quercetin prevented the behavioral changes and damage caused by oxidative stress, possibly due to its antioxidant action. Our findings demonstrated that quercetin has neuroprotective effects in an animal model of autism, suggesting that this natural molecule could be an important therapeutic agent for treatment of autism spectrum disorders (ASDs).


Assuntos
Transtorno Autístico/prevenção & controle , Transtorno Autístico/psicologia , Química Encefálica , Sintase do Porfobilinogênio/metabolismo , Quercetina/uso terapêutico , Animais , Anticonvulsivantes , Transtorno Autístico/induzido quimicamente , Feminino , Atividade Motora , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Medição da Dor , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Interação Social , Ácido Valproico , Aumento de Peso
19.
Neurotoxicology ; 77: 60-70, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31883448

RESUMO

Hypermethioninemia is an inherited metabolic disorder characterized by high concentration of methionine (Met) and its metabolites such as methionine sulfoxide (Met-SO), which may lead to development of neurological alterations. The aim of this study was to investigate the in vitro effects of Met or Met-SO on viability, proliferation, morphology, and neurochemical parameters in primary culture of cortical astrocytes, after treatment with 1 or 2 mM Met or 0.5 mM Met-SO, for 24, 48, and 72 h. Met or Met-SO did not affect cell viability and proliferation but induced astrocyte hypertrophy. Acetylcholinesterase activity was increased, while Na+, K+-ATPase activity was decreased by 2 mM Met, Met-SO, or Met (1 and 2 mM) + Met-SO (P < 0.05). ATP and AMP hydrolysis was decreased by Met (1 and 2 mM), Met-SO and Met (1 and 2 mM) + Met-SO treatment, while ADP hydrolysis was enhanced by Met-SO and Met (1 and 2 mM) + Met-SO (P < 0.05). Superoxide dismutase activity was increased by Met-SO and Met (1 and 2 mM) + Met-SO (P < 0.05). Catalase and glutathione S-transferase activities were reduced by Met or Met-SO treatment for 48 and 72 h (P < 0.05). Reactive oxygen species and total thiol content was reduced by Met or Met-SO treatment for 24, 48, and 72 h while nitrite and thiobarbituric acid reactive substance levels were increased under the same experimental conditions (P < 0.05). High concentrations of Met and Met-SO do not cause cell death but induced changes in astrocyte function. These alterations in astrocytic homeostasis may be associated with neurological symptoms found in hypermethioninemia.


Assuntos
Astrócitos , Metionina/análogos & derivados , Metionina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Células Cultivadas , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo
20.
Cell Mol Neurobiol ; 39(6): 783-797, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31115733

RESUMO

Among gliomas types, glioblastoma is considered the most malignant and the worst form of primary brain tumor. It is characterized by high infiltration rate and great angiogenic capacity. The presence of an inflammatory microenvironment contributes to chemo/radioresistance, resulting in poor prognosis for patients. Recent data show that thiazolidinones have a wide range of pharmacological properties, including anti-inflammatory and antiglioma activities. Nanocapsules of biodegradable polymers become an alternative to cancer treatment since they provide targeted drug delivery and could overcome blood-brain barrier. Therefore, here we investigated the in vitro antiglioma activity and the potential in vivo toxicity of 2- (2-methoxyphenyl) -3- ((piperidin-1-yl) ethyl) thiazolidin-4-one-loaded polymeric nanocapsules (4L-N). Nanocapsules were prepared and characterized in terms of particle size, polydispersity index, zeta potential, pH, molecule content and encapsulation efficiency. Treatment with 4L-N selectively decreased human U138MG and rat C6 cell lines viability and proliferation, being even more efficient than the free-form molecule (4L). In addition, 4L-N did not promote toxicity to primary astrocytes. We further demonstrated that the treatment with sub-therapeutic dose of 4L-N did not alter weight, neither resulted in mortality, toxicity or peripheral damage to Wistar rats. Finally, 4L as well as 4L-N did not alter makers of oxidative damage, such as TBARS levels and total sulfhydryl content, and did not change antioxidant enzymes SOD and CAT activity in liver and brain of treated rats. Taken together, these data indicate that the nanoencapsulation of 4L has potentiated its antiglioma effect and does not cause in vivo toxicity.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Nanocápsulas/química , Piperidinas/toxicidade , Piperidinas/uso terapêutico , Polímeros/química , Tiazolidinas/toxicidade , Tiazolidinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores Tumorais/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Glioma/sangue , Glioma/patologia , Humanos , Luz , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Piperidinas/síntese química , Piperidinas/química , Polímeros/síntese química , Ratos Wistar , Tiazolidinas/síntese química , Tiazolidinas/química , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Testes de Toxicidade , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA