Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Antimicrob Agents ; 64(5): 107317, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233214

RESUMO

BACKGROUND: Data about antibiotic de-escalation in sepsis associated with the bloodstream and caused by Enterobacterales are scarce. The objectives of this study are to identify factors associated with early de-escalation and to analyse the impact of de-escalation on mortality in patients with Enterobacterales bloodstream infection (BSI) with a Sequential Organ Failure Assessment (SOFA) score ≥ 2. METHODS: A prospective, multicentre cohort study was performed including episodes of BSI due to Enterobacterales and a SOFA score ≥ 2 who were receiving an active antipseudomonal ß-lactam; the isolate should be susceptible to at least 1 narrower-spectrum antibiotic. Variables associated with de-escalation were identified using logistic binary regression. The association of de-escalation with 30-day mortality was investigated. Confounding was controlled by calculating a propensity score used as covariate, as matching variable, and for inverse probability treatment weighting. RESULTS: Of the 582 patients included, de-escalation was performed in 311 (53.4%). Neutropenia (adjusted odds ratio [aOR] = 0.37; 95% confidence interval [95% CI] = 0.18-0.75), central venous catheter (aOR = 0.52; 95% CI = 0.32-0.83), and extended-spectrum ß-lactamase (ESBL)-producing isolate (aOR = 0.28; 95% CI = 0.17-0.48) were negatively associated with de-escalation, and urinary tract source was positively associated (aOR = 2.27; 95% CI = 1.56-3.33). The 30-day mortality was 6.8% (21 patients) in de-escalated patients and 14.4% (39) in not de-escalated patients (relative risk, 0.63; 95% CI = 0.44-0.89). In multivariate analysis including the propensity score, de-escalation was not associated with mortality (AOR = 0.98; 95% CI = 0.39-2.47) and was protective in the case of urinary or biliary tract source (AOR = 0.31, 95% CI = 0.09-1.06). Matched and inverse probability treatment weighting analysis showed similar results. CONCLUSIONS: These results suggest that early de-escalation from antipseudomonal ß-lactams is safe in patients with Enterobacterales bacteremia and SOFA ≥ 2.

2.
J Antimicrob Chemother ; 79(8): 1794-1800, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38863341

RESUMO

OBJECTIVES: Bloodstream infections (BSI) are an important cause of mortality, although they show heterogeneity depending on patients and aetiological factors. Comprehensive and specific mortality scores for BSI are scarce. The objective of this study was to develop a mortality predictive score in BSI based on a multicentre prospective cohort. METHODS: A prospective cohort including consecutive adults with bacteraemia recruited between October 2016 and March 2017 in 26 Spanish hospitals was randomly divided into a derivation cohort (DC) and a validation cohort (VC). The outcome was all-cause 30-day mortality. Predictors were assessed the day of blood culture growth. A logistic regression model and score were developed in the DC for mortality predictors; the model was applied to the VC. RESULTS: Overall, 4102 patients formed the DC and 2009 the VC. Mortality was 11.8% in the DC and 12.34% in the CV; the patients and aetiological features were similar for both cohorts. The mortality predictors selected in the final multivariate model in the DC were age, cancer, liver cirrhosis, fatal McCabe underlying condition, polymicrobial bacteraemia, high-risk aetiologies, high-risk source of infection, recent use of broad-spectrum antibiotics, stupor or coma, mean blood pressure <70 mmHg and PaO2/FiO2 ≤ 300 or equivalent. Mortality in the DC was <2% for ≤2 points, 6%-14% for 3-7 points, 26%-45% for 8-12 points and ≥60% for ≥13 points. The predictive score had areas under the receiving operating curves of 0.81 (95% CI 0.79-0.83) in the DC and 0.80 (0.78-0.83) in the VC. CONCLUSIONS: A 30 day mortality predictive score in BSI with good discrimination ability was developed and internally validated.


Assuntos
Bacteriemia , Humanos , Estudos Prospectivos , Masculino , Feminino , Bacteriemia/mortalidade , Bacteriemia/microbiologia , Idoso , Pessoa de Meia-Idade , Espanha/epidemiologia , Idoso de 80 Anos ou mais , Adulto , Fatores de Risco , Prognóstico , Modelos Logísticos
3.
J Neuroinflammation ; 20(1): 207, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691115

RESUMO

Vascular endothelial function is challenged during cerebral ischemia and reperfusion. The endothelial responses are involved in inflammatory leukocyte attraction, adhesion and infiltration, blood-brain barrier leakage, and angiogenesis. This study investigated gene expression changes in brain endothelial cells after acute ischemic stroke using transcriptomics and translatomics. We isolated brain endothelial mRNA by: (i) translating ribosome affinity purification, enabling immunoprecipitation of brain endothelial ribosome-attached mRNA for translatome sequencing and (ii) isolating CD31+ endothelial cells by fluorescence-activating cell sorting for classical transcriptomic analysis. Both techniques revealed similar pathways regulated by ischemia but they showed specific differences in some transcripts derived from non-endothelial cells. We defined a gene set characterizing the endothelial response to acute stroke (24h) by selecting the differentially expressed genes common to both techniques, thus corresponding with the translatome and minimizing non-endothelial mRNA contamination. Enriched pathways were related to inflammation and immunoregulation, angiogenesis, extracellular matrix, oxidative stress, and lipid trafficking and storage. We validated, by flow cytometry and immunofluorescence, the protein expression of several genes encoding cell surface proteins. The inflammatory response was associated with the endothelial upregulation of genes related to lipid storage functions and we identified lipid droplet biogenesis in the endothelial cells after ischemia. The study reports a robust translatomic signature of brain endothelial cells after acute stroke and identifies enrichment in novel pathways involved in membrane signaling and lipid storage. Altogether these results highlight the endothelial contribution to the inflammatory response, and identify novel molecules that could be targets to improve vascular function after ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/genética , Transcriptoma , Encéfalo , Acidente Vascular Cerebral/genética , Lipídeos
4.
J Hepatol ; 79(4): 1025-1036, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348790

RESUMO

BACKGROUND & AIMS: Ductular reaction expansion is associated with poor prognosis in patients with advanced liver disease. However, the mechanisms promoting biliary cell proliferation are largely unknown. Here, we identify neutrophils as drivers of biliary cell proliferation and the defective wound-healing response. METHODS: The intrahepatic localization of neutrophils was evaluated in patients with chronic liver disease. Neutrophil dynamics were analyzed by intravital microscopy and neutrophil-labeling assays in DDC-treated mice. Neutrophil depletion or inhibition of recruitment was achieved using a Ly6g antibody or a CXCR1/2 inhibitor, respectively. Mice deficient in PAD4 (peptidyl arginine deiminase 4) and ELANE/NE (neutrophil elastase) were used to investigate the mechanisms underlying ductular reaction expansion. RESULTS: In this study we describe a population of ductular reaction-associated neutrophils (DRANs), which are in direct contact with biliary epithelial cells in chronic liver diseases and whose numbers increased in parallel with disease progression. We show that DRANs are immobilized at the site of ductular reaction for a prolonged period of time. In addition, liver neutrophils display a unique phenotypic and transcriptomic profile, showing a decreased phagocytic capacity and increased oxidative burst. Depletion of neutrophils or inhibition of their recruitment reduces DRANs and the expansion of ductular reaction, while mitigating liver fibrosis and angiogenesis. Mechanistically, neutrophils deficient in PAD4 and ELANE abrogate neutrophil-induced biliary cell proliferation, thus indicating the role of neutrophil extracellular traps and elastase release in ductular reaction expansion. CONCLUSIONS: Overall, our study reveals the accumulation of DRANs as a hallmark of advanced liver disease and a potential therapeutic target to mitigate ductular reaction and the maladaptive wound-healing response. IMPACT AND IMPLICATIONS: Our results indicate that neutrophils are highly plastic and can have an extended lifespan. Moreover, we identify a new role of neutrophils as triggers of expansion of the biliary epithelium. Overall, the results of this study indicate that ductular reaction-associated neutrophils (or DRANs) are new players in the maladaptive tissue-healing response in chronic liver injury and may be a potential target for therapeutic interventions to reduce ductular reaction expansion and promote tissue repair in advanced liver disease.


Assuntos
Hepatopatias , Neutrófilos , Animais , Camundongos , Fígado , Proliferação de Células , Epitélio
5.
Stroke ; 54(7): 1875-1887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226775

RESUMO

BACKGROUND: Respiratory and urinary tract infections are frequent complications in patients with severe stroke. Stroke-associated infection is mainly due to opportunistic commensal bacteria of the microbiota that may translocate from the gut. We investigated the mechanisms underlying gut dysbiosis and poststroke infection. METHODS: Using a model of transient cerebral ischemia in mice, we explored the relationship between immunometabolic dysregulation, gut barrier dysfunction, gut microbial alterations, and bacterial colonization of organs, and we explored the effect of several drug treatments. RESULTS: Stroke-induced lymphocytopenia and widespread colonization of lung and other organs by opportunistic commensal bacteria. This effect correlated with reduced gut epithelial barrier resistance, and a proinflammatory sway in the gut illustrated by complement and nuclear factor-κB activation, reduced number of gut regulatory T cells, and a shift of gut lymphocytes to γδT cells and T helper 1/T helper 17 phenotypes. Stroke increased conjugated bile acids in the liver but decreased bile acids and short-chain fatty acids in the gut. Gut fermenting anaerobic bacteria decreased while opportunistic facultative anaerobes, notably Enterobacteriaceae, suffered an expansion. Anti-inflammatory treatment with a nuclear factor-κB inhibitor fully abrogated the Enterobacteriaceae overgrowth in the gut microbiota induced by stroke, whereas inhibitors of the neural or humoral arms of the stress response were ineffective at the doses used in this study. Conversely, the anti-inflammatory treatment did not prevent poststroke lung colonization by Enterobacteriaceae. CONCLUSIONS: Stroke perturbs homeostatic neuro-immuno-metabolic networks facilitating a bloom of opportunistic commensals in the gut microbiota. However, this bacterial expansion in the gut does not mediate poststroke infection.


Assuntos
Microbioma Gastrointestinal , Pneumonia , Acidente Vascular Cerebral , Camundongos , Animais , NF-kappa B , Bactérias/genética , Acidente Vascular Cerebral/complicações , Pulmão
6.
Antibiotics (Basel) ; 12(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671330

RESUMO

It is not known whether sequential outpatient parenteral antimicrobial (OPAT) is as safe and effective as conventional hospitalization in patients with S. aureus bacteremia (SAB). A post-hoc analysis of the comparative effectiveness of conventional hospitalization versus sequential OPAT was performed in two prospective Spanish cohorts of patients with S. aureus bacteremia. The PROBAC cohort is a national, multicenter, prospective observational cohort of patients diagnosed in 22 Spanish hospitals between October 2016 and March 2017. The DOMUS OPAT cohort is a prospective observational cohort including patients from two university hospitals in Seville, Spain from 2012 to 2021. Multivariate regression was performed, including a propensity score (PS) for receiving OPAT, stratified analysis according to PS quartiles, and matched pair analyses based on PS. Four hundred and thirteen patients were included in the analysis: 150 in sequential OPAT and 263 in the full hospitalization therapy group. In multivariate analysis, including PS and center effect as covariates, 60-day treatment failure was lower in the OPAT group than in the full hospitalization group (p < 0.001; OR 0.275, 95%CI 0.129−0.584). In the PS-based matched analyses, sequential treatment under OPAT was not associated with higher 60-day treatment failure (p = 0.253; adjusted OR 0.660; % CI 0.324−1.345). OPAT is a safe and effective alternative to conventional in-patient therapy for completion of treatment in well-selected patients with SAB, mainly those associated with a low-risk source and without end-stage kidney disease.

7.
Open Biol ; 13(1): 220200, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629019

RESUMO

Microglia are very sensitive to changes in the environment and respond through morphological, functional and metabolic adaptations. To depict the modifications microglia undergo under healthy and pathological conditions, we developed free access image analysis scripts to quantify microglia morphologies and phagocytosis. Neuron-glia cultures, in which microglia express the reporter tdTomato, were exposed to excitotoxicity or excitotoxicity + inflammation and analysed 8 h later. Neuronal death was assessed by SYTOX staining of nucleus debris and phagocytosis was measured through the engulfment of SYTOX+ particles in microglia. We identified seven morphologies: round, hypertrophic, fried egg, bipolar and three 'inflamed' morphologies. We generated a classifier able to separate them and assign one of the seven classes to each microglia in sample images. In control cultures, round and hypertrophic morphologies were predominant. Excitotoxicity had a limited effect on the composition of the populations. By contrast, excitotoxicity + inflammation promoted an enrichment in inflamed morphologies and increased the percentage of phagocytosing microglia. Our data suggest that inflammation is critical to promote phenotypical changes in microglia. We also validated our tools for the segmentation of microglia in brain slices and performed morphometry with the obtained mask. Our method is versatile and useful to correlate microglia sub-populations and behaviour with environmental changes.


Assuntos
Microglia , Fagocitose , Humanos , Microglia/metabolismo , Inflamação/metabolismo , Morte Celular , Neurônios/metabolismo
8.
EMBO Mol Med ; 15(2): e17175, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36541061

RESUMO

Microglial cells of the aged brain manifest signs of dysfunction that could contribute to the worse neurological outcome of stroke in the elderly. Treatment with colony-stimulating factor 1 receptor antagonists enables transient microglia depletion that is followed by microglia repopulation after treatment interruption, causing no known harm to mice. We tested whether this strategy restored microglia function and ameliorated stroke outcome in old mice. Cerebral ischemia/reperfusion induced innate immune responses in microglia highlighted by type I interferon and metabolic changes involving lipid droplet biogenesis. Old microglia accumulated lipids under steady state and displayed exacerbated innate immune responses to stroke. Microglia repopulation in old mice reduced lipid-laden microglia, and the cells exhibited reduced inflammatory responses to ischemia. Moreover, old mice with renewed microglia showed improved motor function 2 weeks after stroke. We conclude that lipid deposits in aged microglia impair the cellular responses to ischemia and worsen functional recovery in old mice.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Animais , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo , Isquemia Encefálica/metabolismo , Isquemia/metabolismo , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL
9.
Microbiol Spectr ; 10(4): e0005122, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35771010

RESUMO

Biliary-tract bloodstream infections (BT-BSI) caused by Enterococcus faecalis and E. faecium are associated with inappropriate empirical treatment and worse outcomes compared to other etiologies. The objective of this study was to investigate the risk factors for enterococcal BT-BSI. Patients with BT-BSI from the PROBAC cohort, including consecutive patients with BSI in 26 Spanish hospitals between October 2016 and March 2017, were selected; episodes caused by E. faecalis or E. faecium and other causes were compared. Independent predictors for enterococci were identified by logistic regression, and a predictive score was developed. Eight hundred fifty episodes of BT-BSI were included; 73 (8.5%) were due to target Enterococcus spp. (48 [66%] were E. faecium and 25 [34%] E. faecalis). By multivariate analysis, the variables independently associated with Enterococcus spp. were (OR; 95% confidence interval): cholangiocarcinoma (4.48;1.32 to 15.25), hospital acquisition (3.58;2.11 to 6.07), use of carbapenems in the previous month (3.35;1.45 to 7.78), biliary prosthesis (2.19;1.24 to 3.90), and moderate or severe chronic kidney disease (1.55;1.07 to 2.26). The AUC of the model was 0.74 [95% CI0.67 to 0.80]. A score was developed, with 7, 6, 5, 4, and 2 points for these variables, respectively, with a negative predictive value of 95% for a score ≤ 6. A model, including cholangiocarcinoma, biliary prosthesis, hospital acquisition, previous carbapenems, and chronic kidney disease showed moderate prediction ability for enterococcal BT-BSI. Although the score will need to be validated, this information may be useful for deciding empirical therapy in biliary tract infections when bacteremia is suspected. IMPORTANCE Biliary tract infections are frequent, and a significant cause of morbidity and mortality. Bacteremia is common in these infections, particularly in the elderly and patients with cancer. Inappropriate empirical treatment has been associated with increased risk of mortality in bacteremic cholangitis, and the probability of receiving inactive empirical treatment is higher in episodes caused by enterococci. This is because many of the antimicrobial agents recommended in guidelines for biliary tract infections lack activity against these organisms. To the best of our knowledge, this is the first study analyzing the predictive factors for enterococcal BT-BSI and deriving a predictive score.


Assuntos
Bacteriemia , Sistema Biliar , Colangiocarcinoma , Colangite , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Insuficiência Renal Crônica , Idoso , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Carbapenêmicos , Colangiocarcinoma/complicações , Colangite/complicações , Estudos de Coortes , Enterococcus , Enterococcus faecalis , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Humanos , Insuficiência Renal Crônica/complicações , Fatores de Risco
10.
Antibiotics (Basel) ; 11(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35740114

RESUMO

Community-onset bloodstream infections (CO-BSI) caused by gram-negative bacilli are common and associated with significant mortality; those caused by Pseudomonas aeruginosa are associated with worse prognosis and higher rates of inadequateempirical antibiotic treatment. The aims of this study were to describe the characteristics of patients with CO-BSI caused by P. aeruginosa, to identify predictors, and to develop a predictive score for P. aeruginosa CO-BSI. Materials/methods: PROBAC is a prospective cohort including patients >14 years with BSI from 26 Spanish hospitals between October 2016 and May 2017. Patients with monomicrobial P. aeruginosa CO-BSI and monomicrobial Enterobacterales CO-BSI were included. Variables of interest were collected. Independent predictors of Pseudomonas aeruginosa CO-BSI were identified by logistic regression and a prediction score was developed. Results: A total of 78patients with P. aeruginosa CO-BSI and 2572 with Enterobacterales CO-BSI were included. Patients with P. aeruginosa had a median age of 70 years (IQR 60−79), 68.8% were male, median Charlson score was 5 (IQR 3−7), and 30-daymortality was 18.5%. Multivariate analysis identified the following predictors of CO-BSI-PA [adjusted OR (95% CI)]: male gender [1.89 (1.14−3.12)], haematological malignancy [2.45 (1.20−4.99)], obstructive uropathy [2.86 (1.13−3.02)], source of infection other than urinary tract, biliary tract or intra-abdominal [6.69 (4.10−10.92)] and healthcare-associated BSI [1.85 (1.13−3.02)]. Anindex predictive of CO-BSI-PA was developed; scores ≥ 3.5 showed a negative predictive value of 89% and an area under the receiver operator curve (ROC) of 0.66. Conclusions: We did not find a good predictive score of P. aeruginosa CO-BSI due to its relatively low incidence in the overall population. Our model includes variables that are easy to collect in real clinical practice and could be useful to detect patients with very low risk of P. aeruginosa CO-BSI.

11.
Front Cell Neurosci ; 16: 820127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221925

RESUMO

The activation of microglia and the infiltration of macrophages are hallmarks of neuroinflammation after acute brain injuries, including traumatic brain injury (TBI). The two myeloid populations share many features in the post-injury inflammatory response, thus, being antigenically indistinguishable. Recently Tmem119, a type I transmembrane protein specifically expressed by microglia under physiological conditions, was proposed as a tool to differentiate resident microglia from blood-borne macrophages, not expressing it. However, the validity of Tmem119 as a specific marker of resident microglia in the context of acute brain injury, where microglia are activated and macrophages are recruited, needs validation. Our purpose was to investigate Tmem119 expression and distribution in relation to the morphology of brain myeloid cells present in the injured area after TBI. Mice underwent sham surgery or TBI by controlled cortical impact (CCI). Brains from sham-operated, or TBI mice, were analyzed by in situ hybridization to identify the cells expressing Tmem119, and by Western blot and quantitative immunofluorescence to measure Tmem119 protein levels in the entire brain regions and single cells. The morphology of Iba1+ myeloid cells was analyzed at different times (4 and 7 days after TBI) and several distances from the contused edge in order to associate Tmem119 expression with morphological evolution of active microglia. In situ hybridization indicated an increased Tmem119 RNA along with increased microglial complement C1q activation in the contused area and surrounding regions. On the contrary, the biochemical evaluation showed a drop in Tmem119 protein levels in the same areas. The Tmem119 immunoreactivity decreased in Iba1+ myeloid cells found in the contused cortex at both time points, with the cells showing the hypertrophic ameboid morphology having no Tmem119 expression. The Tmem119 was present on ramifications of resident microglia and its presence was decreased as a consequence of microglial activation in cortical areas close to contusion. Based on the data, we conclude that the decrease of Tmem119 in reactive microglia may depend on the process of microglial activation, which involves the retracting of their branchings to acquire an ameboid shape. The Tmem119 immunoreactivity decreases in reactive microglia to similar levels than the blood-borne macrophages, thus, failing to discriminate the two myeloid populations after TBI.

12.
Exp Neurol ; 346: 113865, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547288

RESUMO

Leukocyte infiltration and blood-brain barrier breakdown contribute to secondary brain damage after traumatic brain injury (TBI). TBI induces neuroimmune responses triggering pathogenic complement activation through different pathways, including the lectin pathway. We investigated mechanisms underlying mannose-binding lectin (MBL)-mediated brain damage focusing on neutrophil infiltration and blood-brain barrier breakdown in a TBI mouse model. Wild type mice and MBL-/- null mice were subjected to controlled cortical impact. We studied neutrophil infiltration and regional localization by confocal microscopy 1, 4 and 15 days post-trauma, and investigated neutrophil extracellular trap (NET) formation. By immunofluorescence and/or Western blotting in various brain regions we studied the presence of fibrin(ogen), pentraxin-3, albumin and immunoglobulin G. Finally, we studied neurofilament proteins, synaptophysin, and αII-spectrin, and assessed white matter content in the injured tissue. TBI triggered an acute wave of neutrophil infiltration at day 1 followed by a more discrete persistence of neutrophils in the injured tissue at least until day 15. We detected the presence of NETs and pentraxin-3 in the injured tissue, as well as accumulation of fibrin(ogen), increased blood-brain barrier permeability, and neurofilament, synaptophysin and white matter loss, and calpain-mediated αII spectrin breakdown. MBL-/- mice showed reduced number of Ly6G+ neutrophils 4 days after TBI, lower accumulation of pentraxin-3 and fibrin(ogen) in the injured tissue, reduced global plasma protein extravasation, and better preservation of axonal and white matter integrity. These results show that MBL participates in secondary neutrophil accumulation and blood-brain barrier breakdown, and promotes axonal and white matter damage after TBI in mice.


Assuntos
Axônios/metabolismo , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Lectina de Ligação a Manose/deficiência , Animais , Axônios/imunologia , Axônios/patologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Encéfalo/imunologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Masculino , Lectina de Ligação a Manose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Int J Antimicrob Agents ; 58(1): 106352, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33961992

RESUMO

The epidemiology of bloodstream infections (BSIs) is dynamic as it depends on microbiological, host and healthcare system factors. The aim of this study was to update the information regarding the epidemiology of BSIs in Spain considering the type of acquisition. An observational, prospective cohort study in 26 Spanish hospitals from October 2016 through March 2017 including all episodes of BSI in adults was performed. Bivariate analyses stratified by type of acquisition were performed. Multivariate analyses were performed by logistic regression. Overall, 6345 BSI episodes were included; 2510 (39.8%) were community-acquired (CA), 1661 (26.3%) were healthcare-associated (HCA) and 2056 (32.6%) hospital-acquired (HA). The 30-day mortality rates were 11.6%, 19.5% and 22.0%, respectively. The median age of patients was 71 years (interquartile range 60-81 years) and 3656 (58.3%; 95% confidence interval 57.1-59.6%) occurred in males. The proportions according to patient sex varied according to age strata. Escherichia coli (43.8%), Klebsiella spp. (8.9%), Staphylococcus aureus (8.9%) and coagulase-negative staphylococci (7.4%) were the most frequent pathogens. Multivariate analyses confirmed important differences between CA and HCA episodes, but also between HCA and HA episodes, in demographics, underlying conditions and aetiology. In conclusion, we have updated the epidemiological information regarding patients' profiles, underlying conditions, frequency of acquisition types and aetiological agents of BSI in Spain. HCA is confirmed as a distinct type of acquisition.


Assuntos
Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bacteriemia/mortalidade , Escherichia coli/isolamento & purificação , Feminino , Humanos , Klebsiella/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Índice de Gravidade de Doença , Espanha/epidemiologia , Staphylococcus aureus/isolamento & purificação , Adulto Jovem
14.
Cell Rep ; 33(3): 108291, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086061

RESUMO

Brain CD11c+ cells share features with microglia and dendritic cells (DCs). Sterile inflammation increases brain CD11c+ cells, but their phenotype, origin, and functions remain largely unknown. We report that, after cerebral ischemia, microglia attract DCs to the inflamed brain, and astroglia produce Flt3 ligand, supporting development and expansion of CD11c+ cells. CD11c+ cells in the inflamed brain are a complex population derived from proliferating microglia and infiltrating DCs, including a major subset of OX40L+ conventional cDC2, and also cDC1, plasmacytoid, and monocyte-derived DCs. Despite sharing certain morphological features and markers, CD11c+ microglia and DCs display differential expression of pattern recognition receptors and chemokine receptors. DCs excel CD11c- and CD11c+ microglia in the capacity to present antigen through MHCI and MHCII. Of note, cDC1s protect from brain injury after ischemia. We thus reveal aspects of the dynamics and functions of brain DCs in the regulation of inflammation and immunity.


Assuntos
Antígenos CD11/metabolismo , Células Dendríticas/metabolismo , Microglia/metabolismo , Animais , Antígenos/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Antígenos CD11/genética , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Citocinas/metabolismo , Células Dendríticas/fisiologia , Encefalite/imunologia , Encefalite/metabolismo , Citometria de Fluxo , Inflamação/imunologia , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Monócitos/metabolismo , Receptores de Quimiocinas/metabolismo
15.
Front Cell Neurosci ; 14: 206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719588

RESUMO

Ischemic stroke causes brain tissue damage and may release central nervous system (CNS)-specific peptides to the periphery. Neural antigen presentation in the lymphoid tissue could prime immune cells and result in adaptive immune response. However, autoimmune responses against neural antigens are not commonly uncovered after stroke. We studied the brain tissue of nine fatal stroke cases and the blood of a cohort of 13 patients and 11 controls. Flow cytometry carried out in three of the brain samples showed CD8 and CD4 T cells in the cerebrospinal fluid (CSF) of the ventricles in the patient deceased 1 day poststroke, T cells with an activated phenotype in the CSF of the patient that died at day 6, and T cells in the ischemic brain tissue in the patient deceased 140 days after stroke onset. Immunohistochemistry showed higher T cell numbers in the core of the lesion of the patient deceased 18 days post-stroke than in the patients deceased from 1 to 5 days post-stroke. In blood samples, we studied whether lymphocytes were primed in the periphery against neural antigens at sequential times (on admission, day 5, and day 90) after stroke. T lymphocytes of stroke patients produced IFN-γ and TNF-α and responded to MBP peptides by increasing their production of TNF-α and IL-10 at admission, but not at later time points. In contrast, IL-4 producing T cells showed progressive increases. Higher percentages of TNF-α producing T lymphocytes at admission were independently associated with poorer outcomes at 90 days. However, we did not detect T cell responses to neural-antigen stimulation 90 days post-stroke. Altogether the results suggest acute T cell priming in the periphery in acute stroke, T cell trafficking from the CSF to the ischemic brain tissue, and the existence of active mechanisms preventing autoreactivity.

16.
J Cereb Blood Flow Metab ; 40(1_suppl): S98-S116, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32151226

RESUMO

Inflammatory Ly6ChiCCR2+ monocytes infiltrate the brain after stroke but their functions are not entirely clear. We report that CCR2+ monocytes and CCR2+ lymphocytes infiltrate the brain after permanent ischemia. To underscore the role of CCR2+ monocytes, we generated mice with selective CCR2 deletion in monocytes. One day post-ischemia, these mice showed less infiltrating monocytes and reduced expression of pro-inflammatory cytokines, markers of alternatively macrophage activation, and angiogenesis. Accordingly, Ly6Chi monocytes sorted from the brain of wild type mice 24 h post-ischemia expressed pro-inflammatory genes, M2 genes, and pro-angiogenic genes. Flow cytometry showed heterogeneous phenotypes within the infiltrating Ly6ChiCCR2+ monocytes, including a subgroup of Arginase-1+ cells. Mice with CCR2-deficient monocytes displayed a delayed inflammatory rebound 15 days post-ischemia that was not found in wild type mice. Furthermore, they showed reduced angiogenesis and worse behavioral performance. Administration of CCR2+/+ bone-marrow monocytes to mice with CCR2-deficient monocytes did not improve the behavioral performance suggesting that immature bone-marrow monocytes lack pro-reparative functions. The results show that CCR2+ monocytes contribute to acute post-ischemic inflammation and participate in functional recovery. The study unravels heterogeneity in the population of CCR2+ monocytes infiltrating the ischemic brain and suggests that pro-reparative monocyte subsets promote functional recovery after ischemic stroke.


Assuntos
Encéfalo/irrigação sanguínea , AVC Isquêmico/metabolismo , Monócitos/metabolismo , Receptores CCR2/deficiência , Animais , Modelos Animais de Doenças , AVC Isquêmico/patologia , Masculino , Camundongos , Monócitos/patologia , Neovascularização Fisiológica
17.
Neurobiol Dis ; 137: 104722, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926295

RESUMO

Central nervous system (CNS)-border associated macrophages (BAMs) maintain their steady-state population during adulthood and are not replaced by circulating monocytes under physiological conditions. Their roles in CNS integrity and functions under pathological conditions remain largely unknown. Until recently, BAMs and microglia could not be unequivocally distinguished due to expression of common macrophage markers. We investigated the transcriptional profiles of immunosorted BAMs from rat sham-operated and ischemic brains using RNA sequencing. We found that BAMs express the distinct transcriptional signature than microglia and infiltrating macrophages. The enrichment of functional groups associated with the cell cycle in CD163+ cells isolated 3 days after the ischemic injury indicates the proliferative capacity of these cells. The increased number of CD163+ cells 3 days post-ischemia was corroborated by flow cytometry and detecting the increased number of CD163+ cells positive for a proliferation marker Ki67 at perivascular spaces. CD163+ cells in the ischemic brains up-regulated many inflammatory genes and parenchymal CD163+ cells expressed iNOS, which indicates acquisition of a pro-inflammatory phenotype. In mice, BAMs typically express CD206 and we found a subset of these cells expressing CD169. Chimeric mice generated by transplanting bone marrow of donor Cx3cr1gfpCCR2rfp mice to wild type hosts showed an increased number of CX3CR1+CD169+ perivascular macrophages 3 days post-ischemia. Furthermore, these cells accumulated in the brain parenchyma and we detected replacement of perivascular macrophages by peripheral monocytic cells in the sub-acute phase of stroke. In line with the animal results, post-mortem brain samples from human ischemic stroke cases showed time-dependent accumulation of CD163+ cells in the ischemic parenchyma. Our findings indicate a unique transcriptional signature of BAMs, their local proliferation and migration of inflammatory BAMs to the brain parenchyma after stroke in animal models and humans.


Assuntos
Isquemia Encefálica/metabolismo , Sistema Nervoso Central/metabolismo , AVC Isquêmico/metabolismo , Macrófagos/metabolismo , Animais , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Humanos , Macrófagos/patologia , Microglia/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Ratos Wistar
18.
Ann Intern Med ; 171(10): 685-694, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31610549

RESUMO

Background: The potential role of new oral anticoagulants in antiphospholipid antibody syndrome (APS) remains uncertain. Objective: To determine whether rivaroxaban is noninferior to dose-adjusted vitamin K antagonists (VKAs) for thrombotic APS. Design: 3-year, open-label, randomized noninferiority trial. (EU Clinical Trials Register: EUDRA [European Union Drug Regulatory Authorities] code 2010-019764-36). Setting: 6 university hospitals in Spain. Participants: 190 adults (aged 18 to 75 years) with thrombotic APS. Intervention: Rivaroxaban (20 mg/d or 15 mg/d, according to renal function) versus dose-adjusted VKAs (target international normalized ratio, 2.0 to 3.0, or 3.1 to 4.0 in patients with a history of recurrent thrombosis). Measurements: The primary efficacy outcome was the proportion of patients with new thrombotic events; the primary safety outcome was major bleeding. The prespecified noninferiority margin for risk ratio (RR) was 1.40. Secondary outcomes included time to thrombosis, type of thrombosis, changes in biomarker levels, cardiovascular death, and nonmajor bleeding. Results: After 3 years of follow-up, recurrent thrombosis occurred in 11 patients (11.6%) in the rivaroxaban group and 6 (6.3%) in the VKA group (RR in the rivaroxaban group, 1.83 [95% CI, 0.71 to 4.76]). Stroke occurred more commonly in patients receiving rivaroxaban (9 events) than in those receiving VKAs (0 events) (corrected RR, 19.00 [CI, 1.12 to 321.9]). Major bleeding occurred in 6 patients (6.3%) in the rivaroxaban group and 7 (7.4%) in the VKA group (RR, 0.86 [CI, 0.30 to 2.46]). Post hoc analysis suggested an increased risk for recurrent thrombosis in rivaroxaban-treated patients with previous arterial thrombosis, livedo racemosa, or APS-related cardiac valvular disease. Limitation: Anticoagulation intensity was not measured in the rivaroxaban group. Conclusion: Rivaroxaban did not show noninferiority to dose-adjusted VKAs for thrombotic APS and, in fact, showed a non-statistically significant near doubling of the risk for recurrent thrombosis. Primary Funding Source: Bayer Hispania.


Assuntos
Anticoagulantes/uso terapêutico , Síndrome Antifosfolipídica/tratamento farmacológico , Inibidores do Fator Xa/uso terapêutico , Rivaroxabana/uso terapêutico , Trombose/prevenção & controle , Varfarina/uso terapêutico , Adulto , Feminino , Hemorragia/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Prevenção Secundária , Acidente Vascular Cerebral/epidemiologia , Trombose/epidemiologia , Vitamina K/antagonistas & inibidores
19.
Stroke ; 50(6): 1548-1557, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31084324

RESUMO

Background and Purpose- Ischemia attracts neutrophils to the injured brain. However, neutrophil location and access to the damaged brain tissue is not yet entirely understood. We aimed to investigate neutrophil location in a mouse model of cerebral ischemia/reperfusion. Methods- Adult male C57BL/6 mice (n=52) received 45-minute intraluminal middle cerebral artery occlusion followed by 14, 24, 48, or 96 hours of reperfusion. Sham-operated mice (n=9) were subjected to the entire surgical procedure. We used wild-type mice and CatchupIVM mice expressing a red fluorescent protein in neutrophils. In addition, fluorescent neutrophils obtained from reporter DsRed (discosoma red fluorescent protein) mice were transferred intravenously to wild-type mice after ischemia. Mice received transcardial paraformaldehyde perfusion, the brain was cryoprotected, frozen, and cryostat sections were studied by immunofluorescence and confocal microscopy. Results- Ischemia induced a time-dependent increase in brain neutrophil numbers versus sham operation. We detected neutrophils in the leptomeninges, ventricles, capillary lumen, perivascular spaces, and parenchyma within the infarcted core. Most ischemic mice showed neutrophils in the leptomeninges and perivascular spaces, whereas the presence and number of neutrophils in the parenchyma was variable among ischemic mice. During the first 24 hours, only a few mice showed parenchymal neutrophils, but the frequency of mice showing neutrophils in the parenchyma and neutrophil numbers increased at 48 and 96 hours. We also detected signs of basement membrane disruption and hints of occasional neutrophil degranulation and formation of neutrophil extracellular traps. Conclusions- After ischemia/reperfusion, neutrophils accumulate in the leptomeninges and perivascular spaces, and eventually can reach the infarcted brain parenchyma.


Assuntos
Lesões Encefálicas , Encéfalo , Degranulação Celular , Armadilhas Extracelulares/metabolismo , Neutrófilos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neutrófilos/metabolismo , Neutrófilos/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fatores de Tempo
20.
Acta Neuropathol ; 137(2): 321-341, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580383

RESUMO

Stroke attracts neutrophils to the injured brain tissue where they can damage the integrity of the blood-brain barrier and exacerbate the lesion. However, the mechanisms involved in neutrophil transmigration, location and accumulation in the ischemic brain are not fully elucidated. Neutrophils can reach the perivascular spaces of brain vessels after crossing the endothelial cell layer and endothelial basal lamina of post-capillary venules, or migrating from the leptomeninges following pial vessel extravasation and/or a suggested translocation from the skull bone marrow. Based on previous observations of microglia phagocytosing neutrophils recruited to the ischemic brain lesion, we hypothesized that microglial cells might control neutrophil accumulation in the injured brain. We studied a model of permanent occlusion of the middle cerebral artery in mice, including microglia- and neutrophil-reporter mice. Using various in vitro and in vivo strategies to impair microglial function or to eliminate microglia by targeting colony stimulating factor 1 receptor (CSF1R), this study demonstrates that microglial phagocytosis of neutrophils has fundamental consequences for the ischemic tissue. We found that reactive microglia engulf neutrophils at the periphery of the ischemic lesion, whereas local microglial cell loss and dystrophy occurring in the ischemic core are associated with the accumulation of neutrophils first in perivascular spaces and later in the parenchyma. Accordingly, microglia depletion by long-term treatment with a CSF1R inhibitor increased the numbers of neutrophils and enlarged the ischemic lesion. Hence, microglial phagocytic function sets a critical line of defense against the vascular and tissue damaging capacity of neutrophils in brain ischemia.


Assuntos
Isquemia Encefálica/patologia , Microglia/patologia , Neutrófilos/patologia , Acidente Vascular Cerebral/patologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA