Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain ; 145(1): 208-223, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34382076

RESUMO

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.


Assuntos
Alquil e Aril Transferases , Mioclonia , Doenças Neurodegenerativas , Retinose Pigmentar , Criança , Dolicóis/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Retinose Pigmentar/genética
2.
Am J Hum Genet ; 104(6): 1060-1072, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31104773

RESUMO

The developmental and epileptic encephalopathies (DEEs) are heterogeneous disorders with a strong genetic contribution, but the underlying genetic etiology remains unknown in a significant proportion of individuals. To explore whether statistical support for genetic etiologies can be generated on the basis of phenotypic features, we analyzed whole-exome sequencing data and phenotypic similarities by using Human Phenotype Ontology (HPO) in 314 individuals with DEEs. We identified a de novo c.508C>T (p.Arg170Trp) variant in AP2M1 in two individuals with a phenotypic similarity that was higher than expected by chance (p = 0.003) and a phenotype related to epilepsy with myoclonic-atonic seizures. We subsequently found the same de novo variant in two individuals with neurodevelopmental disorders and generalized epilepsy in a cohort of 2,310 individuals who underwent diagnostic whole-exome sequencing. AP2M1 encodes the µ-subunit of the adaptor protein complex 2 (AP-2), which is involved in clathrin-mediated endocytosis (CME) and synaptic vesicle recycling. Modeling of protein dynamics indicated that the p.Arg170Trp variant impairs the conformational activation and thermodynamic entropy of the AP-2 complex. Functional complementation of both the µ-subunit carrying the p.Arg170Trp variant in human cells and astrocytes derived from AP-2µ conditional knockout mice revealed a significant impairment of CME of transferrin. In contrast, stability, expression levels, membrane recruitment, and localization were not impaired, suggesting a functional alteration of the AP-2 complex as the underlying disease mechanism. We establish a recurrent pathogenic variant in AP2M1 as a cause of DEEs with distinct phenotypic features, and we implicate dysfunction of the early steps of endocytosis as a disease mechanism in epilepsy.


Assuntos
Complexo 2 de Proteínas Adaptadoras/genética , Subunidades mu do Complexo de Proteínas Adaptadoras/genética , Encefalopatias/etiologia , Clatrina/metabolismo , Endocitose , Epilepsia/etiologia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/etiologia , Adolescente , Animais , Encefalopatias/patologia , Criança , Pré-Escolar , Clatrina/genética , Epilepsia/patologia , Feminino , Humanos , Lactente , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/patologia , Sequenciamento do Exoma
3.
J Clin Endocrinol Metab ; 103(3): 1005-1014, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29267953

RESUMO

Background: Lamin A/C (LMNA) gene mutations cause a heterogeneous group of progeroid disorders, including Hutchinson-Gilford progeria syndrome, mandibuloacral dysplasia, and atypical progeroid syndrome (APS). Five of the 31 previously reported patients with APS harbored a recurrent de novo heterozygous LMNA p.T10I mutation. All five had generalized lipodystrophy, as well as similar metabolic and clinical features, suggesting a distinct progeroid syndrome. Methods: We report nine new patients and follow-up of two previously reported patients with the heterozygous LMNA p.T10I mutation and compare their clinical and metabolic features with other patients with APS. Results: Compared with other patients with APS, those with the heterozygous LMNA p.T10I mutation were younger in age but had increased prevalence of generalized lipodystrophy, diabetes mellitus, acanthosis nigricans, hypertriglyceridemia, and hepatomegaly, together with higher fasting serum insulin and triglyceride levels and lower serum leptin and high-density lipoprotein cholesterol levels. Prominent clinical features included mottled skin pigmentation, joint contractures, and cardiomyopathy resulting in cardiac transplants in three patients at ages 13, 33, and 47 years. Seven patients received metreleptin therapy for 0.5 to 16 years with all, except one noncompliant patient, showing marked improvement in metabolic complications. Conclusions: Patients with the heterozygous LMNA p.T10I mutation have distinct clinical features and significantly worse metabolic complications compared with other patients with APS as well as patients with Hutchinson-Gilford progeria syndrome. We propose that they be recognized as having generalized lipodystrophy-associated progeroid syndrome. Patients with generalized lipodystrophy-associated progeroid syndrome should undergo careful multisystem assessment at onset and yearly metabolic and cardiac evaluation, as hyperglycemia, hypertriglyceridemia, hepatic steatosis, and cardiomyopathy are the major contributors to morbidity and mortality.


Assuntos
Lamina Tipo A/genética , Lipodistrofia Generalizada Congênita/genética , Mutação , Progéria/genética , Absorciometria de Fóton/métodos , Adolescente , Adulto , Antropometria/métodos , Criança , Feminino , Humanos , Lipodistrofia Generalizada Congênita/metabolismo , Lipodistrofia Generalizada Congênita/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Fenótipo , Progéria/metabolismo , Progéria/patologia
4.
Hum Mol Genet ; 26(21): 4095-4104, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985353

RESUMO

Primary lymphedema is due to developmental and/or functional defects in the lymphatic system. It may affect any part of the body, with predominance for the lower extremities. Twenty-seven genes have already been linked to primary lymphedema, either isolated, or as part of a syndrome. The proteins that they encode are involved in VEGFR3 receptor signaling. They account for about one third of all primary lymphedema cases, underscoring the existence of additional genetic factors. We used whole-exome sequencing to investigate the underlying cause in a non-consanguineous family with two children affected by lymphedema, lymphangiectasia and distinct facial features. We discovered bi-allelic missense mutations in ADAMTS3. Both were predicted to be highly damaging. These amino acid substitutions affect well-conserved residues in the prodomain and in the peptidase domain of ADAMTS3. In vitro, the mutant proteins were abnormally processed and sequestered within cells, which abolished proteolytic activation of pro-VEGFC. VEGFC processing is also affected by CCBE1 mutations that cause the Hennekam lymphangiectasia-lymphedema syndrome syndrome type1. Our data identifies ADAMTS3 as a novel gene that can be mutated in individuals affected by the Hennekam syndrome. These patients have distinctive facial features similar to those with mutations in CCBE1. Our results corroborate the recent in vitro and murine data that suggest a close functional interaction between ADAMTS3 and CCBE1 in triggering VEGFR3 signaling, a cornerstone for the differentiation and function of lymphatic endothelial cells.


Assuntos
Proteínas ADAMTS/deficiência , Proteínas ADAMTS/genética , Anormalidades Craniofaciais/genética , Linfangiectasia Intestinal/genética , Linfedema/genética , Pró-Colágeno N-Endopeptidase/deficiência , Pró-Colágeno N-Endopeptidase/genética , Proteínas ADAMTS/metabolismo , Adulto , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Criança , Sequência Conservada , Anormalidades Craniofaciais/metabolismo , Células Endoteliais/metabolismo , Feminino , Células HEK293 , Humanos , Linfangiectasia Intestinal/metabolismo , Linfedema/metabolismo , Masculino , Mutação de Sentido Incorreto , Linhagem , Pró-Colágeno N-Endopeptidase/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-28579975

RESUMO

BACKGROUND: Activity-dependent neuroprotective protein (ADNP) is one of the most prevalent de novo mutated genes in syndromic autism spectrum disorders, driving a general interest in the gene and the syndrome. AIM: The aim of this study was to provide a detailed developmental case study of ADNP p.Tyr719* mutation toward improvements in (1) diagnostic procedures, (2) phenotypic scope, and (3) interventions. METHODS: Longitudinal clinical and parental reports. RESULTS: AD (currently 11-year-old) had several rare congenital anomalies including imperforate anus that was surgically repaired at 2 days of age. Her findings were craniofacial asymmetries, global developmental delay, autistic behaviors (loss of smile and inability to make eye contact at the age of 15 months), and slow thriving as she gradually matures. Comprehensive diagnostic procedures at 3 years resulted in no definitive diagnosis. With parental persistence, AD began walking at 3.5 years (skipping crawling). At the age of 8.5 years, AD was subjected to whole exome sequencing, compared to the parents and diagnosed as carrying an ADNP p.Tyr719* mutation, a causal recurring mutation in ADNP (currently ~17/80 worldwide). Brain magnetic resonance imaging demonstrated mild generalized cerebral volume loss with reduced posterior white matter. AD is non-verbal, communicating with signs and word approximations. She continues to make slow but forward developmental progress, and her case teaches newly diagnosed children within the ADNP Kids Research Foundation. CONCLUSION: This case study emphasizes the importance of diagnosis and describes, for the first time, early motor intervention therapies. Detailed developmental profile of selected cases leads to better treatments.

6.
Am J Med Genet A ; 152A(1): 169-74, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20014132

RESUMO

Cleidocranial dysplasia (CCD) is a rare autosomal dominant skeletal dysplasia due to mutations causing haploinsufficiency of RUNX2, an osteoblast transcription factor specific for bone and cartilage. The classic form of CCD is characterized by delayed closure of the fontanels, hypoplastic or aplastic clavicles and dental anomalies. Clinical reports suggest that a subset of patients with CCD have skeletal changes which mimic hypophosphatasia (HPP). Mutations in RUNX2 are detected in approximately 65% of cases of CCD, and microdeletions occur in 13%. We present clinical and radiological features in a 6-year-old child with severe CCD manifested by absence of the clavicles marked calvarial hypomineralization, osteoporosis and progressive kyphoscoliosis. HPP features included Bowdler spurs, severe osteopenia, and low alkaline phosphatase. Following negative mutation analysis of RUNX2, comparative genomic hybridization (CGH) microarray was performed. The result revealed a microdeletion in RUNX2, disrupting the C-terminal part of the gene.


Assuntos
Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Hipofosfatasia/genética , Deleção de Sequência , Criança , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA