Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(11): 15855-15862, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549421

RESUMO

We use an ultrafast optical pump-probe spectroscopy to study quasiparticle (QP) dynamics in a topological insulator LaBi. Temperature-dependent optical measurements have been carried out, by which we observed nearly constant fast component (with a lifetime of 0.15 ps) and slow component (with a lifetime of 1.5 ps) for the whole range from 10 K to 295 K. The laser fluence dependence result shows that there is no saturation for the QP dynamics up to 3.3 mJ /cm2. Moreover, an Eg mode transverse optical (TO) coherent phonon has also been observed, with a frequency of 2.8 THz. Our results provide for the first time the ultrafast dynamics information of both the QPs and coherent phonons in a nodal line topological material.

2.
Phys Rev Lett ; 121(26): 267004, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636125

RESUMO

In cuprate superconductors, high magnetic fields have been used extensively to suppress superconductivity and expose the underlying normal state. Early measurements revealed insulatinglike behavior in underdoped material versus temperature T, in which resistivity increases on cooling with a puzzling log(1/T) form. We instead use microwave measurements of flux-flow resistivity in YBa_{2}Cu_{3}O_{6+y} and Tl_{2}Ba_{2}CuO_{6+δ} to study charge transport deep inside the superconducting phase, in the low-temperature and low-field regime. Here, the transition from metallic low-temperature resistivity (dρ/dT>0) to a log(1/T) upturn persists throughout the superconducting doping range, including a regime at high carrier dopings in which the field-revealed normal-state resistivity is Fermi-liquid-like. The log(1/T) form is thus likely a signature of d-wave superconducting order, and the field-revealed normal state's log(1/T) resistivity may indicate the free-flux-flow regime of a phase-disordered d-wave superconductor.

3.
Phys Rev Lett ; 119(9): 097001, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949586

RESUMO

Spin excitations in the overdoped high temperature superconductors Tl_{2}Ba_{2}CuO_{6+δ} and (Bi,Pb)_{2}(Sr,La)_{2}CuO_{6+δ} were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-L_{3} absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle-hole excitations whose maximum shows a fluorescencelike shift upon detuning. The spectra of both compound families are closely similar, and their salient features are reproduced by exact-diagonalization calculations of the single-band Hubbard model on a finite cluster. The results are discussed in the light of recent transport experiments indicating a quantum phase transition near optimal doping.

4.
Phys Rev Lett ; 113(14): 147206, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25325658

RESUMO

We report a neutron scattering study of the magnetic order and dynamics of the bilayer perovskite Sr(3)Fe(2)O(7), which exhibits a temperature-driven metal-insulator transition at 340 K. We show that the Fe(4+) moments adopt incommensurate spiral order below T(N) = 115 K and provide a comprehensive description of the corresponding spin-wave excitations. The observed magnetic order and excitation spectra can be well understood in terms of an effective spin Hamiltonian with interactions ranging up to third-nearest-neighbor pairs. The results indicate that the helical magnetism in Sr(3)Fe(2)O(7) results from competition between ferromagnetic double-exchange and antiferromagnetic superexchange interactions whose strengths become comparable near the metal-insulator transition. They thus confirm a decades-old theoretical prediction and provide a firm experimental basis for models of magnetic correlations in strongly correlated metals.

5.
Phys Rev Lett ; 111(8): 087003, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010467

RESUMO

Despite intense studies the exact nature of the order parameter in superconducting Sr2RuO4 remains unresolved. We have used small-angle neutron scattering to study the vortex lattice in Sr2RuO4 with the field applied close to the basal plane, taking advantage of the transverse magnetization. We measured the intrinsic superconducting anisotropy between the c axis and the Ru-O basal plane (~60), which greatly exceeds the upper critical field anisotropy (~20). Our result imposes significant constraints on possible models of triplet pairing in Sr2RuO4 and raises questions concerning the direction of the zero spin projection axis.

6.
Science ; 337(6096): 821-5, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22798406

RESUMO

The concept that superconductivity competes with other orders in cuprate superconductors has become increasingly apparent, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of ~3.2 lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba(2)Cu(3)O(6+)(x), with hole concentrations of 0.09 to 0.13 per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature (T(c)); further cooling below T(c) abruptly reverses the divergence of the charge correlations. In combination with earlier observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge density wave instability that competes with superconductivity.

7.
Phys Rev Lett ; 103(8): 087402, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19792760

RESUMO

X-ray absorption spectra on the overdoped high-temperature superconductors Tl2Ba2CuO(6+delta) and La(2-x)SrxCuO(4+/-delta) reveal a striking departure in the electronic structure from that of the underdoped regime. The upper Hubbard band, identified with strong correlation effects, is not observed on the oxygen K edge, while the lowest-energy prepeak gains less intensity than expected above p approximately 0.21. This suggests a breakdown of the Zhang-Rice singlet approximation and a loss of correlation effects or a significant shift in the most fundamental parameters of the system, rendering single-band Hubbard models inapplicable. Such fundamental changes suggest that the overdoped regime may offer a distinct route to understanding in the cuprates.

8.
Phys Rev Lett ; 95(7): 077001, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-16196815

RESUMO

The high-T(c) superconductor Tl(2)Ba(2)CuO(6 + delta) is studied by angle-resolved photoemission spectroscopy. For a very overdoped T(c) = 30 K sample, the Fermi surface consists of a single large hole pocket centered at (pi, pi) and is approaching a topological transition. Although a superconducting gap with d(x(2)-y(2)) symmetry is tentatively identified, the quasiparticle evolution with momentum and binding energy exhibits a marked departure from the behavior observed in under and optimally doped cuprates. The relevance of these findings to scattering, many-body, and quantum-critical phenomena is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA