RESUMO
The increasing environmental concern surrounding organic ultraviolet absorbers (OUVAs) has prompted heightened attention, particularly their presence in personal care products (organic ultraviolet filters, OUVFs) and industrial products (organic ultraviolet stabilizers, OUVSs). This study investigates the impact of human activities and environmental factors on the occurrence, spatiotemporal distribution, and ecological risk of eight commonly utilized OUVFs and OUVSs in the coastal region of Beibu Gulf, South China Sea. The study area is characterized by multiple functional zones with distinct human activities. Results reveal elevated concentrations of OUVAs during summer compared to winter, attributed to increased residential usage, tourist activities, industrial releases, and intensified ultraviolet (UV) radiation. Interestingly, the proportion of OUVFs increases during summer, while OUVSs decrease. Correlation analysis between OUVAs and sampling sites reveals that tourism and domestic wastewater are the main contributors to OUVF contamination in summer, whereas mariculture and port trade significantly impact OUVS contamination in winter. The ecological risk assessment indicates predominantly low or medium risk levels for most OUVAs in both local seawater and freshwater ecosystems. Nevertheless, OUVFs, with a particular focus on 4-methylbenzylidene camphor (4-MBC), and OUVSs, specifically 2-(2-hydroxy-5-methylphenyl) benzotriazole (UV-P), exhibit a heightened risk compared to alternative substances. These findings provide crucial insights into the development of targeted mitigation strategies for OUVAs, taking into account the varying contamination levels of OUVFs and OUVSs resulting from diverse human activities, aiming to protect the health of aquatic ecosystems in diverse functional zones.
RESUMO
Direct activation of the pro-apoptotic protein BAX represents a potential therapeutic strategy to trigger apoptosis in cancer. Herein, structural optimization of the reported BAX trigger site activator BTSA1 turned out into a series of pyrazolone derivatives, where compound 6d exhibited significantly enhanced antiproliferative effects and apoptosis induction ability compared to BTSA1. Mechanism of action studies revealed that compound 6d could initiate the BAX activation cascade, promoting BAX insertion into mitochondrial membranes and activating MOMP, ultimately leading to the release of cytochrome c and apoptosis. Furthermore, 6d showed significantly improved in vitro stability and CYPs profile compared to BTSA1. This work may lay a foundation to develop potent BAX trigger site activators for the treatment of BAX-expressing malignancies.
Assuntos
Apoptose , Membranas Mitocondriais , Proteína X Associada a bcl-2/metabolismo , Membranas Mitocondriais/metabolismo , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Citocromos c/metabolismoRESUMO
The occurrence of organic ultraviolet absorbers (OUVAs) in coral reef regions has aroused widespread concern. This study focused on the occurrence, distribution, bioaccumulation and ecological risk of ten OUVAs in both coastal and offshore coral reef regions in the South China Sea. While the Σ10OUVAs was 85 % lower in the offshore seawater (15.1 ng/L) than in the coastal seawater (102.1 ng/L), the Σ10OUVAs was 21 % lower in the offshore corals (1.82 µg/g dry weight (dw)) than in the coastal corals (2.31 µg/g dw). This difference was speculated to relate to the high intensity of human activities in the coastal regions. Moreover, the offshore corals showed higher bioaccumulative capability toward OUVAs (log bioaccumulation factors (BAFs): 1.22-5.07) than the coastal corals (log BAFs: 0.17-4.38), which was presumably the influence of varied physiological status under different environmental conditions. The results of the ecological risk assessment showed that BP-3 resulted in 73 % of coastal corals and 20 % of offshore corals at a risk of bleaching. Therefore, the usage and discharge of BP-3 should be managed and controlled by the countries adjacent to the South China Sea for the protection of coral reefs.
Assuntos
Antozoários , Animais , Humanos , Antozoários/fisiologia , Bioacumulação , Recifes de Corais , Água do Mar , ChinaRESUMO
Life-history strategies play a critical role in susceptibility to environmental stresses for Scleractinia coral. Metabolomics, which is capable of determining the metabolic responses of biological systems to genetic and environmental changes, is competent for the characterization of species' biological traits. In this study, two coral species (Pocillopora meandrina and Seriatopora hystrix in the South China Sea) with different life-history strategies ("competitive" and "weedy") were targeted, and untargeted mass spectrometry metabolomics combined with molecular networking was applied to characterize their differential metabolic pathways. The results show that lyso-platelet activating factors (lyso-PAFs), diacylglyceryl carboxyhydroxymethylcholine (DGCC), aromatic amino acids, and sulfhydryl compounds were more enriched in P. meandrina, whereas new phospholipids, dehydrated phosphoglycerol dihydroceramide (de-PG DHC), monoacylglycerol (MAG), fatty acids (FA) (C < 18), short peptides, and guanidine compounds were more enriched in S. hystrix. The metabolic pathways involved immune response, energy metabolism, cellular membrane structure regulation, oxidative stress system, secondary metabolite synthesis, etc. While the immune system (lysoPAF) and secondary metabolite synthesis (aromatic amino acids and sulfhydryl compounds) facilitates fast growth and resistance to environmental stressors of P. meandrina, the cell membrane structure (structural lipids), energy storage (storage lipids), oxidative stress system (short peptides), and secondary metabolite synthesis (guanidine compounds) are beneficial to the survival of S. hystrix in harsh conditions. This study contributes to the understanding of the potential molecular traits underlying life-history strategies of different coral species.
RESUMO
Coral bleaching caused by climate change has resulted in large-scale coral reef decline worldwide. However, the knowledge of physiological response mechanisms of scleractinian corals under high-temperature stress is still challenging. Here, untargeted mass spectrometry-based metabolomics combining with Global Natural Product Social Molecular Networking (GNPS) was utilized to investigate the physiological response of the coral species Pavona decussata under thermal stress. A wide variety of metabolites (including lipids, fatty acids, amino acids, peptides, osmolytes) were identified as the potential biomarkers and subjected to metabolic pathway enrichment analysis. We discovered that, in the thermal-stressed P. decussata coral holobiont, (1) numerous metabolites in classes of lipids and amino acids significantly decreased, indicating an enhanced lipid hydrolysis and aminolysis that contributed to up-regulation in gluconeogenesis to meet energy demand for basic survival; (2) pantothenate and panthenol, two essential intermediates in tricarboxylic acid (TCA) cycle, were up-regulated, implying enhanced efficiency in energy production; (3) small peptides (e.g., Glu-Leu and Glu-Glu-Glu-Glu) and lyso-platelet-activating factor (lysoPAF) possibly implicated a strengthened coral immune response; (4) the down-regulation of betaine and trimethylamine N-oxide (TMAO), known as osmolyte compounds for maintaining holobiont homeostasis, might be the result of disruption of coral holobiont.
Assuntos
Antozoários , Produtos Biológicos , Animais , Branqueamento de Corais , Betaína/metabolismo , Espectrometria de Massas , Biomarcadores/metabolismo , Aminoácidos/metabolismo , Ácidos Tricarboxílicos , LipídeosRESUMO
Recent studies have indicated that coral mucus plays an important role in the bioaccumulation of a few organic pollutants by corals, but no relevant studies have been conducted on organochlorine pesticides (OCPs). Previous studies have also indicated that OCPs widely occur in a few coral reef ecosystems and have a negative effect on coral health. Therefore, this study focused on the occurrence and bioaccumulation of a few OCPs, such as dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB) and p,p'-methoxychlor (MXC), in the coral tissues and mucus as well as in plankton and seawater from a coastal reef ecosystem (Weizhou Island) in the South China Sea. The results indicated that DDTs were the predominant OCPs in seawater and marine biota. Higher concentrations of OCPs in plankton may contribute to the enrichment of OCPs by corals. The significantly higher total OCP concentration (∑8OCPs) found in coral mucus than in coral tissues suggested that coral mucus played an essential role in resisting enrichment of OCPs by coral tissues. This study explored the different functions of coral tissues and mucus in OCP enrichment and biodegradation for the first time, highlighting the need for OCP toxicity experiments from both tissue and mucus perspectives.
Assuntos
Antozoários , Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Animais , Antozoários/metabolismo , China , Recifes de Corais , Ecossistema , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Plâncton/metabolismo , Poluentes Químicos da Água/análiseRESUMO
The Bcl-2 anti-apoptotic proteins were widely overexpressed in diverse tumor cells, especially for Bcl-2 and Mcl-1, which regarding as important targets of apoptosis induction and resistance of chemotherapy. We identified novel Bcl-2/Mcl-1 dual inhibitors with indole scaffold by the optimization of hit 1. Structure modification against several moieties including hydrophobic fragment, side chain and benzoic acid fragment was conducted and the structure-activity relationship was analyzed. The representative compound 12f exhibited sub-micromolar binding affinities to Bcl-2/Mcl-1 without binding affinity to Bcl-XL. Mechanism of action studies suggested that compound 12f dose-dependently triggered apoptosis in HL-60 cells. Compound 12f represents a novel Bcl-2/Mcl-1 dual inhibitor which deserving further study.
Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-bcl-2 , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Humanos , Indóis/química , Indóis/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Proteína bcl-X/metabolismoRESUMO
Quinones are important components participating in various biological processes as well as hazardous substances to human health. Rapid determination of quinones in environmental samples and biofluids is the basis for assessing their health effect. Here, we presented a rapid, straightforward, highly sensitive and environmental-friendly wooden-tip electrospray ionization mass spectrometry (ESI-MS) method for the determination of quinones in PM2.5, urine and serum. An amine group "tag" was introduced to the quinone structure through in situ derivatization with cysteamine to improve ionization efficiency of quinones in wooden-tip ESI-MS. The toothpicks were treated by sharpening and acidification with HNO3. Experimental parameters, including sample volume, spray voltage, and spray solvent composition were optimized to be 1 µL, 3.5 kV, and ACN/CH3COOC2H5 (v/v, 9:1), respectively. The limits of detection for the determination of 1,4-benzoquinone, methyl-p-benzoquinone, 1,4-naphthoquinone and 1,4-anthraquinone in ACN under the optimal conditions were 1.00, 0.96, 0.13, 0.16 ng (1.00, 0.96, 0.13, 0.16 µg/mL, sample volume, 1 µL), respectively. This approach was successfully applied to the determination of 1,4-naphthoquinone and 1,4-anthraquinone in complex matrices, including PM2.5, urine and serum without or with minimal sample preparation (LOD range: 0.22-1.48 ng).
Assuntos
Quinonas , Espectrometria de Massas por Ionização por Electrospray , HumanosRESUMO
In this study, polycyclic aromatic hydrocarbons (PAHs) were measured in sediments of the Beibu Gulf in 2017 to investigate sources and a risk assessment. The results showed the total PAH concentration (∑16PAHs) in sediments of the Beibu Gulf in 2017 (17.6 ± 16.7 ng g-1) was significantly lower than that in 2010 (47.8 ± 27.4 ng g-1). The ∑16PAHs concentrations varied spatially within the Beibu Gulf, impacted by point source pollution. The results of adsorption/desorption and water-air partitioning suggest that the environmental behavior of PAHs in the Beibu Gulf is affected by atmospheric deposition and sediment-water partitioning. A risk assessment showed that the PAHs in sediments were within a safety threshold. Three source apportionment methods show that oil spills and oil and biomass burning were the most important (>83.8%) sources of PAHs in sediments of the Beibu Gulf.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análiseRESUMO
Combinatorial synthesis has been widely used as an efficient strategy to screen for active compounds. Mass spectrometry is the method of choice in the identification of hits resulting from high-throughput screenings due to its high sensitivity, specificity, and speed. However, manual data processing of mass spectrometry data, especially for structurally diverse products in combinatorial chemistry, is extremely time-consuming and one of the bottlenecks in this process. In this study, we demonstrated the effectiveness of a tandem mass spectrometry molecular networking-based strategy for product identification, reaction dynamics monitoring, and active compound targeting in combinatorial synthesis. Molecular networking connects compounds with similar tandem mass spectra into a cluster and has been widely used in natural products analysis. We show that both the expected and side products can be readily characterized using molecular networking based on their mass spectrometry fragmentation patterns. Additionally, time-dependent molecular networking was integrated to track reaction dynamics to determine the optimal reaction time to maximize target product yields. We also present a proof-of-concept experiment that successfully identified and isolated active molecules from a dynamic combinatorial library. These results demonstrated the potential of using molecular networking for identifying, tracking, and high-throughput screening of active compounds in combinatorial synthesis.
RESUMO
Ambient ionization mass spectrometry (AIMS) has grown into a group of emerging analytical techniques that allow rapid, real-time, high-throughput, in situ, and in vivo analysis in many scientific fields including biomedicine, pharmaceuticals, and forensic sciences. While dozens of AIMS techniques have been introduced over the past two decades, their broad commercial and industrial use is still restricted by multiple challenges. In this Perspective, we discuss the most relevant technical challenges facing AIMS, i.e., reproducibility, quantitative ability, molecular coverage, sensitivity, and data complexity, and scientists' recent attempts to overcome these hurdles. Furthermore, we present future directions of AIMS from our perspective, including the necessity that efforts should be made to unravel blind biomolecules in routine analysis, the construction of a data depository for AIMS users, the full automation of pipelines for prospect integration in a robotic laboratory, the movement toward on-site tests, and the expansion of outreach to motivate government officials in policymaking. We anticipate that, with progress in these critical but immature areas, AIMS technology will keep evolving to become a more robust and user-friendly set of technologies and, consequently, be translated into everyday life practice.
Assuntos
Pesquisa Biomédica , Ciências Forenses , Preparações Farmacêuticas/análise , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
2,6-Dichloro-1,4-benzoquinone (DCBQ), a highly toxic and carcinogenic disinfection by-product, was degraded during the electrospray process by elevating the source temperature. This unexpected finding inspired us to use heating to degrade DCBQs in drinking water. The results show that about 99% of DCBQs in the drinking water were degraded in one minute by heating to 100°C with room light irradiation. Therefore, a conclusion can be drawn that heating enables the degradation of DCBQs in drinking water.
RESUMO
Quinones are a class of compounds having substantial toxicity and pharmacological function. This work has produced a derivatization method for quinone detection with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS). Through introducing tags (methoxy) to the quinone structures, the ionization efficiencies of five quinones (p-benzoquinone (BQ), methyl-p-benzoquinone (MBQ), 1,4-naphthoquinone (1,4-NQ), 1,2-naphthoquinone (1,2-NQ), and 1,4-anthraquinones (AQ)) were greatly improved during ESI. The limit of detections (LODs) for quinone determination could be flexibly adjusted by changing the reaction time or the solvent composition. While lower LODs (<0.02 - 2.06 pg for five quinones) were achieved with methanol as the derivatization reagent, the reaction time was substantially shortened (from 27 to 3 h or 11 h) with methanol/water (v/v, 1:1) as the derivatization reagent. Finally, the proposed method was successfully used for quinone determination in airborne particulates.
RESUMO
Electrospray ionization mass spectrometry (ESI-MS) is one of the most prevalent techniques used to monitor protein/peptide oxidation induced by reactive oxygen species (ROSs). However, both corona discharge (CD) and electrochemistry (EC) can also lead to protein/peptide oxidation during ESI. Because the two types of oxidation occur almost simultaneously, determining the extent to which the two pathways contribute to protein/peptide oxidation is difficult. Herein, a time-resolved method was introduced to identify and differentiate CD- and EC-induced oxidation. Using this approach, we separated the instantaneous CD-induced oxidation from the hysteretic EC-induced oxidation, and the effects of the spray voltage and flow rate of the ESI source on both oxidation types were investigated with a homemade ESI source. For angiotensin II analogue (b-DRVYVHPF-y), the dehydrogenation and oxygenation species were the detected EC-induced oxidation products, while the oxygenation species were the major CD-induced oxidation products. This time-resolved approach was also applicable to a commercial HESI source, in which both CD and EC were responsible for hemoglobin and cytochrome c oxidation with upstream grounding while CD dominated the oxidation without upstream grounding.
Assuntos
Peptídeos/metabolismo , Proteínas/metabolismo , Oxirredução , Peptídeos/química , Proteínas/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Fatores de TempoRESUMO
The occurrence, distribution, bioconcentration and diet safety via seafood consumption of 19 antibiotics were investigated in eight closed mariculture ponds, four estuaries, two nearshore areas and one offshore area from the Beibu Gulf. Seventeen, 16, 15 and 7 antibiotics were detected at total concentrations of 43.2 - 885â¯ngâ¯L-1, 22.4 - 118â¯ngâ¯L-1, 22.7 - 24.5â¯ngâ¯L-1, and 1.81-3.23â¯ngâ¯L-1 in the water of the above different areas, respectively. This indicates that the mariculture ponds are important sources of antibiotic pollution on the coast of the Beibu Gulf. Ten antibiotics were detected in feed samples with concentrations ranging from 0.03 to 95.4â¯ngâ¯g-1, demonstrating the presence of antibiotics in the feed and/or residual antibiotics in the raw material of the feed. The field bioconcentration factors (BCFs) of the antibiotics calculated in different culture organisms ranged from 0.55 to 10,774â¯Lâ¯kg-1. The estimated daily intakes (EDIs) of sulphonamides, fluoroquinolones, macrolides and chloramphenicols via aquatic products were 19.8-105, 33.7-178, 34.9-186 and 6.9-37.1â¯ngâ¯d-1, respectively. According to the acceptable daily intakes (ADIs) and maximum residue limits (MRLs) proposed by different organisations, these aquatic products (shrimp, crab and oyster) reached the standard of safe consumption and could not pose a health risk to humans. However, a potential elevated risk to humans may remain because of the occurrence of multiple antibiotics in the cultured organisms, particularly for sensitive populations, such as pregnant women, the elderly and children.
Assuntos
Antibacterianos/análise , Aquicultura , Monitoramento Ambiental/métodos , Estuários , Contaminação de Alimentos/análise , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Criança , China , Exposição Dietética/análise , Inocuidade dos Alimentos , Humanos , Alimentos Marinhos/normasRESUMO
Laboratory research has indicated that antibiotics had negative effects on coral growth by disturbing natural microbiota; however, no field studies have reported antibiotic contamination levels and their influence on coral growth in natural coral reef regions (CRRs). This study investigated antibiotic occurrence and sources in the surface water from CRRs that have suffered from rapid coral degradation and evaluated their risk to coral growth. These regions are in the South China Sea, including four coastal and two offshore CRRs. The results show that 13 antibiotics were detected in the coastal CRRs with concentrations ranging from 10-2-100 ng L-1, while 5 antibiotics occurred in offshore CRRs (300-950 km from the mainland), with concentrations ranging from 10-2 to 10-1 ng L-1. Their concentrations decreased gradually from the coast to offshore in the transport process. However, Yongxing Island, which is approximately 300 km from the mainland, was an exception with relatively higher concentrations than the surrounding reefs because of the ever-increasing human activity on the island. The presence of anthropogenic contaminants antibiotics in CRRs may be a potential risk to coral growth.
Assuntos
Antozoários/fisiologia , Antibacterianos/análise , Recifes de Corais , Monitoramento Ambiental , Água do Mar/química , Poluentes Químicos da Água/análise , Animais , China , Atividades Humanas , Humanos , Risco , Medição de RiscoRESUMO
Unexpected reduction of iminoquinone (IQ) and quinone derivatives was first reported during positive electrospray ionization mass spectrometry. Upon increasing spray voltage, the intensities of IQ and quinone derivatives decreased drastically, accompanying the increase of the intensities of the reduction products, amodiaquine (AQ) and phenol derivatives. To gain more insight into the mechanism of such reduction, we explored the experimental factors that are influential to corona discharge (CD). The results show that experimental parameters that favor severe CD, including metal spray emitter, using water as spray solvent, sheath gas with low dielectric strength (e.g., nitrogen), and shorter spray tip-to-mass spectrometer inlet distance, facilitated the reduction of IQ and quinone derivatives, implying that the reduction should be closely related to CD in the gas phase. Graphical Abstract á .
RESUMO
Chlorination disinfection and antibiotic addition are two universal processes of marine culture. The generation of disinfection byproducts (DBPs) is unavoidable. Antibiotic residue not only pollutes water but also acts as a precursor to the production of new DBPs. The fate of antibiotic norfloxacin (NOR) in chlorination disinfection was investigated. It was observed that NOR could be oxidized by disinfection agent sodium hypochlorite, but the oxidation rate varied considerably with the type of disinfected water. For fresh water, marine culture water and sea water, the reaction rate constant was 0.066 min-1, 0.466 min-1 and 1.241 min-1, respectively. The difference was primarily attributed to the promotion role of bromide ions in seawater and marine culture water. Moreover, the bromide ions could result in the generation of brominated DBPs (Br-DBPs). The kinetics, products, reaction centers and mechanisms were investigated. The active site of NOR was found to be the N4 atom on piperazinyl in fresh water. During marine culture water and sea water disinfection, the carboxyl on NOR was oxidized and two Br-DBPs were formed. This was attributed to the lowering of the reaction's required activation energy when performed in the presence of bromide ions. The Br-DBPs were also confirmed in real shrimp pond brackish water. Quantitative structure activity relationships and the total organic halogen analysis showed that the DBPs in marine culture water possessed stronger toxicological properties than the DBPs in fresh water. The toxicity increase was attributed to the production of Br-DBPs in the disinfection process of marine culture water.
Assuntos
Desinfecção , Norfloxacino/química , Animais , Aquicultura/métodos , Artemia , Desinfetantes/química , Água Potável/química , Halogenação , Água do Mar/química , Hipoclorito de Sódio/farmacologia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodosRESUMO
Dissociation of disulfide is normally mandatory prior to disulfide peptide sequencing via electrospray ionization collision induced dissociation mass spectrometry (ESI-CID-MS). Herein, a facile method for directly sequencing intact disulfide peptides was proposed. The basic principles involved were electrolyte-enhanced corona discharge in ESI and the following oxidative cleavage reaction.
Assuntos
Dissulfetos/química , Peptídeos/química , Análise de Sequência de Proteína/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Humanos , Insulina/química , Dados de Sequência Molecular , OxirreduçãoRESUMO
Accurate mass spectrometry (MS) signal for peptide/protein analysis, which could be affected by various MS conditions, plays an essential role in identification and quantification of biological samples. Herein, we tried to alleviate the possible interferences from electrochemical oxidations during electrospray ionization (ESI). Three most common electrochemical oxidation reactions in ESI include oxidation of analyte, solvent, and electrode. With introduction of induced electrospray ionization (IESI) (a variant form of ESI), these interferences were significantly alleviated for peptides/proteins. That effect was also tested with flow injection experiments with different solution flow rates, electrolyte concentrations and solvent compositions, which was to simulate various chromatography conditions in conventional liquid chromatography (LC) separations. For all chromatography conditions tested, electrochemical oxidation was significantly alleviated for the absence of physical contact between spray solution and electrode.