Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Inorg Chem ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982625

RESUMO

Targeting selective CO2 photoreduction into CH4 remains a challenge due to the sluggish reaction kinetics and poor hydrogenation ability of the unstable intermediate. Here, the active Pt2+ sites were photodeposited on the SrTiO3 photocatalyst, which was well demonstrated to manipulate the CH4 product selectivity. The results showed that SrTiO3 mainly yielded the CO (6.98 µmol g-1) product with poor CH4 (0.17 µmol g-1). With the Pt2+ modification, 100% CH4 selectivity could be obtained with an optimized yield rate of 8.07 µmol g-1. The prominent enhancement resulted from the following roles: (1) the strong electronic interaction between the Pt2+ cocatalyst and SrTiO3 could prompt efficient separation of the photoelectron-hole pairs. (2) The Pt2+ sites were active to capture and activate inert CO2 into HCO3- and CO32- species and allowed fast *COOH formation with the lowered reaction barrier. (3) Compared with SrTiO3, the formed *CO species could be captured tightly on the Pt2+ cocatalyst surface for generating the *CH2 intermediate by the following electron-proton coupling reaction, thus leading to the CH4 product with 100% selectivity.

2.
J Colloid Interface Sci ; 672: 600-609, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38857568

RESUMO

Solar-light driven oxidation of benzylic alcohols over photocatalysts endows significant prospects in value-added organics evolution owing to its facile, inexpensive and sustainable process. However, the unsatisfactory performance of actual photocatalysts due to the inefficient charge separation, low photoredox potential and sluggish surface reaction impedes the practical application of this process. Herein, we developed an innovative Z-Scheme Cs3BiBr9 nanoparticles@porous C3N4 tubes (CBB-NP@P-tube-CN) heterojunction photocatalyst for highly selective benzyl alcohol oxidation. Such composite combining increased photo-oxidation potential, Z-Scheme charge migration route as well as the structural advantages of porous tubular C3N4 ensures the accelerated mass and ions diffusion kinetics, the fast photoinduced carriers dissociation and sufficient photoredox potentials. The CBB-NP@P-tube-CN photocatalyst demonstrates an exceptional performance for selective photo-oxidation of benzylic alcohol into benzaldehyde with 19, 14 and 3 times higher benzylic alcohols conversion rate than those of C3N4 nanotubes, Cs3Bi2Br9 and Cs3Bi2Br9@bulk C3N4 photocatalysts, respectively. This work offers a sustainable photocatalytic system based on lead-free halide perovskite toward large scale solar-light driven value-added chemicals production.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37903001

RESUMO

Photothermal catalysis, which combines light promotion and thermal activation, is a promising approach for converting CO2 into fuels. However, the development of photothermal catalysts with effective light-to-heat conversion, strong charge transfer ability, and suitable active sites remains a challenge. Herein, the photothermal effect- and interfacial N-Ni/Ta-O bond-modulated heterostructure composed of oxygen vacancy-rich NiOx and Ta3N5 was rationally fabricated for efficient photothermal catalytic CO2 reduction. Beyond the charge separation capability conferred by the NiOx/Ta3N5 heterojunction, we observed that the N-Ni and Ta-O bonds linking NiOx and Ta3N5 form a spatial charge transfer channel, which enhances the interfacial electron transfer. Additionally, the presence of surface oxygen vacancies in NiOx induced nonradiative relaxation, resulting in a pronounced photothermal effect that locally heated the catalyst and accelerated the reaction kinetically. Leveraging these favorable factors, the NiOx/Ta3N5 hybrids exhibit remarkably elevated activity (≈32.3 µmol·g-1·h-1) in the conversion of CO2 to CH4 with near-unity selectivity, surpassing the performance of bare Ta3N5 by over 14 times. This study unveils the synergistic effect of photothermal and interfacial chemical bonds in the photothermal-photocatalytic heterojunction system, offering a novel approach to enhance the reaction kinetics of various catalysts.

4.
J Colloid Interface Sci ; 652(Pt A): 636-645, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516580

RESUMO

The conversion of CO2 into syngas, a mixture of CO and H2, via photocatalytic reduction, is a promising approach towards achieving a sustainable carbon economy. However, the evolution of highly adjustable syngas, particularly without the use of sacrifice reagents or additional cocatalysts, remains a significant challenge. In this study, a step-scheme (S-scheme) 0D ZnGa2O4 nanodots (∼7 nm) rooted g-C3N4 nanosheets (denoted as ZnGa2O4/C3N4) heterojunction photocatalyst was synthesized vis a facial in-situ growth strategy for efficient CO2-to-syngas conversion. Both experimental and theoretical studies have demonstrated that the polymeric nature of g-C3N4 and highly distributed ZnGa2O4 nanodots synergistically contribute to a strong interaction between metal oxide and C3N4 support. Furthermore, the desirable S-scheme heterojunction in ZnGa2O4/C3N4 efficiently promotes charge separation, enabling strong photoredox ability. As a result, the S-scheme ZnGa2O4/C3N4 exhibited remarkable activity and selectivity in photochemical conversion of CO2 into syngas, with a syngas production rate of up to 103.3 µ mol g-1 h-1, even in the absence of sacrificial agents and cocatalyst. Impressively, the CO/H2 ratio of syngas can be tunable within a wide range from 1:4 to 2:1. This work exemplifies the effectiveness of a meticulously designed S-scheme heterojunction photocatalyst for CO2-to-syngas conversion with adjustable composition, thus paving the way for new possibilities in sustainable energy conversion and utilization.

5.
Inorg Chem ; 62(2): 893-903, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36599618

RESUMO

To date, non-contact luminescence thermometry methods based on fluorescence intensity ratio (FIR) technology have been studied extensively. However, designing phosphors with high relative sensitivity (Sr) has become a research hotspot. In this work, Eu3+ single-doped Ca2Sb2O7:Eu3+ phosphors with a high Sr value for dual-emitting-center luminescence thermometry are developed and proposed. The anti-thermal quenching behavior of Eu3+ originating from the energy transfer (ET) of host → Eu3+ is found and proved in the designed phosphors. Interestingly, adjustable color emission from blue to orange can be achieved. Surprisingly, the degree of the anti-thermal quenching behavior of Eu3+ gradually reduces from 240 to 127% as the Eu3+ doping content increases from 0.005 to 0.05 mol, attributed to most Eu3+ being located in the low symmetrical [Ca1O8] dodecahedral site. According to the differentiable responses of the host and Eu3+ to temperature, the maximal Sr value reaches 3.369% K-1 (383 K). Moreover, the ambient temperature can be intuitively predicted by observing the emitting color. Owing to the excellent performance in optical thermometry, color-tunable properties, and outstanding acid and alkali resistance for polydimethylsiloxane (PDMS) films, the developed Eu3+ single-doped Ca2Sb2O7:Eu3+ phosphors are expected to be prospective candidates in luminescence thermometers and LED devices in various conditions.

6.
Dalton Trans ; 51(45): 17391-17396, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36325946

RESUMO

Hydrogen production by electrochemical water splitting suffers from high kinetic barriers in the anodic oxygen evolution reaction (OER), which limits the overall efficiency. Herein, we report a structural and electronic engineering strategy by integrating self-standing Fe-doped Ni3S2 (denoted by Fe-Ni3S2) nanosheet arrays with Ni(OH)2 subunits to form heterostructured Fe-Ni3S2/Ni(OH)2 on a Ni Foam substrate. The strong electronic interaction between the Fe-Ni3S2 and Ni(OH)2 constituents contributes abundant catalytic sites and ensures high electron transfer. Moreover, the combined experimental and theoretical study revealed that the coupling of Ni(OH)2 onto the Fe-Ni3S2 is favorable for lowering the activation energy of water oxidation for favorable OER kinetics and upshifting the Ni d-band center to facilitate the adsorption of O-containing intermediates. Consequently, the optimized Fe-Ni3S2/Ni(OH)2 hybrid catalyst exhibits excellent OER performance in alkaline electrolytes with an ultralow overpotential of 202 mV at 10 mA cm-2, a small Tafel slope of 50.6 mV dec-1, and long-term durability under high current density (0.25 A cm-2) for up to 60 h without significant deactivation. Moreover, a two-electrode Fe-Ni3S2/Ni(OH)2||Pt/C electrolyzer requires only a low voltage of 1.54 V at 10 mA cm-2 for overall water splitting. This study emphasizes the importance of interface and surface engineering in achieving highly efficient electrocatalysts.

7.
Dalton Trans ; 51(12): 4685-4694, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224599

RESUMO

Luminescent thermometers provide a non-contact method of probing temperature with high sensitivity and response speed at the nanoscale. Synergistic photoluminescence from different activators can realize high sensitivity for luminescent thermometers by finely selecting ions with specific crystallographic sites. Herein, the more temperature-sensitive Mn4+ and the less-sensitive Eu3+ (or Sm3+) activators are co-doped into a Ca2GdSbO6 matrix to form an effective thermometer, where Mn4+ and Eu3+ (or Sm3+) ions occupy the Sb5+ and Gd3+ sites, respectively. The co-doping of Eu3+ ions or Sm3+ ions leads to lattice expansion of Ca2GdSbO6 matrix and a tuned narrow emission from deep-red to orangish-red. According to the ratio of luminescence intensity, the maximal Sa and Sr values are 0.19 K-0 (347 K) and 1.38% K-( (420 K) for Ca2GdSbO6:Mn4+/Eu3+ probe and 0.26 K-p (363 K) and 1.55% K-( (430 K) for Ca2GdSbO6:Mn4+/Sm3+ probe thermometers, respectively. In addition, thermometers based on Mn4+ emission lifetimes can provide the highest relative sensitivity of 1.47% K-s at 425 K. Thus, the highly-temperature-sensitive Ca2GdSbO6:Mn4+/(Eu3+ or Sm3+) phosphor is a promising candidate for practical luminescence thermometers.

8.
Inorg Chem ; 61(1): 738-745, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34914388

RESUMO

Developing earth-abundant electrocatalysts for efficient oxygen evolution reaction (OER) is of paramount significance for electrochemical water splitting. Herein, an efficient in situ etching-deposition growth strategy is employed to transform pristine two-dimensional (2D) Co-metal-organic frameworks into hollow Ni/Co double hydroxide arrays (denoted as Ni/Co-DH), which not only yields a larger surface area and exposes more active sites but also decreases the activation energy to the OER. With structural and compositional benefits, the Ni/Co-DH exhibits high performance with an overpotential of 229 mV at 10 mA cm-2 and exceptional long-term stability of over 90 h in 1 M KOH medium for OER, comparable to most non-noble oxygen evolution catalysts reported so far. In addition, a two-electrode Ni/Co-DH∥Pt/C electrolyzer also requires a considerably low voltage of 1.58 V at 10 mA cm-2 for overall water splitting. This study affords a rational strategy to develop water-alkali electrolyzers with great complexity for large-scale water-splitting systems.

9.
Inorg Chem ; 60(22): 17398-17406, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723491

RESUMO

Modulating the crystal field environment around the emitting ions is an effective strategy to improve the luminescence performance of the practical effective phosphor materials. Here, smaller Y3+ ions are introduced into substituting the Gd3+ sites in Ba2GdNbO6:Mn4+ phosphor to modify the optical properties, including the enhanced luminescence intensity, redshift, and longer lifetime of the Mn4+ ions. The substitution of smaller Y3+ ions leads to lattice contraction and then strengthens pressure on the local structure, enhances lattice rigidity, and suppresses nonradiative transition. Moreover, the prototype phosphor-converted light-emitting diode (LED) demonstrates a continuous change photoelectric performance with a correlated color temperature of 4883-7876 K and a color rendering index of 64.1-83.2, suggesting that it can be one of the most prospective fluorescent materials applied as a warm red component for white LEDss. Thus, the smaller ion partial substitution can provide a concise approach to modulate the crystal field environment around the emitting ions for excellent luminescence properties of phosphors toward the modern artificial light.

10.
Nanotechnology ; 32(26)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33735849

RESUMO

Water pollution is a global environmental problem that has attracted great concern, and functional carbon nanomaterials are widely used in water treatment. Here, to optimize the removal performance of both oil/organic matter and dye molecules, we fabricated porous and hydrophobic core-shell sponges by growing graphene on three-dimensional stacked copper nanowires. The interconnected pores between the one-dimensional nanocore-shells construct the porous channels within the sponge, and the multilayered graphene shells equip the sponge with a water contact angle over 120° even under acidic and alkaline environments, which enables fast and efficient cleanup of oil on or under the water. The core-shell sponge can absorb oil or organic solvents with densities 40-90 times its own, and its oil-sorption capacity is much larger than those of other porous materials like activated carbon and loofah. On the other hand, the adsorption behavior of the core-shell sponge to dyes including methyl orange (MO) and malachite green (MG), also common water pollutants, was also measured. Dynamic adsorption of MG under cyclic compression demonstrated a higher adsorption rate than that in the static state, and an acidic environment was favorable for the adsorption of MO molecules. Finally, the adsorption isotherm for MO molecules was analyzed and fitted with the Langmuir model, and the adsorption kinetics were studied in depth as well.

11.
RSC Adv ; 11(36): 22467-22472, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35480839

RESUMO

Design and synthesis of non-noble electrocatalyst with controlled structure and composition for hydrogen evolution reaction (HER) are significant for large-scale water electrolysis. Here, an elegant multi-step templating strategy is developed for the fabrication of vertically aligned CoP@Ni2P nanowire-nanosheet architecture on Ni foam. Cobalt-carbonate hydroxides nanowires grown on Ni foam are first synthesized as the self-template. Afterward, a layer of amorphous Ni(OH)2 nanosheets is grown on the Co-based precursors through a chemical bath process, which is then transformed into the hierarchical CoP@Ni2P nanoarrays by a co-phosphatization treatment. Owing to the synergistic effect of the compositions and the advantages of the hierarchical heterostructures, the resulting hybrid electrocatalyst with dense heterointerfaces is revealed as an excellent HER catalyst, with a low overpotential of 101 mV at the current density of 10 mA cm-2, a relatively small Tafel slope of 79 mV dec-1, and favorable long-term stability of at least 20 h in 1 M KOH.

12.
ACS Appl Mater Interfaces ; 12(15): 17343-17352, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212616

RESUMO

Exploiting an appropriate strategy to prepare fine crystal quality black phosphorus nanosheet (BPNS) catalyst is a major challenge for its practical application in catalysis. Herein, we address this challenge by developing a rapid electrochemical expansion strategy for scale preparation of fine crystal quality BPNSs from bulk black phosphorus, which was demonstrated to be an active cocatalyst for photocatalytic nitrogen fixation in the presence of CdS as a photocatalyst. The transient photocurrent and charge density studies show that the BPNSs can efficiently accelerate charge separation of CdS, leading to the enhanced photocatalytic activities of BPNS/CdS nanocomposites for nitrogen fixation. The 1.5% BPNS/CdS photocatalyst exhibits the highest photocatalytic activity for nitrogen fixation with an NH3 evolution rate of 57.64 µmol·L-1·h-1. This study not only affords a rapid and simple strategy for scale synthesis of fine crystal quality BPNSs but also provides new insights into the design and development of black phosphorus-based materials as low-cost metal-free cocatalysts for photocatalytic nitrogen fixation.

13.
Chem Commun (Camb) ; 55(78): 11754-11757, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31513179

RESUMO

We chemically deposited amorphous Ni(OH)2 layers over TaON particles with irregular surface morphology, and subsequently in situ reduced them to Ni (10-20 nm) nanoparticles, to construct a TaON@Ni photocatalyst. Such a hierarchical hybrid aims to combine the enhanced light absorption by the metal Ni plasmonic effect with accelerated charge separation by a Schottky barrier, and herein, achieves a higher photocatalytic activity in CO2 reduction than TaON.

14.
Dalton Trans ; 48(35): 13176-13183, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31368473

RESUMO

Tantalum nitride (Ta3N5) with an appealing band gap (∼2.1 eV) has emerged as a promising catalyst in the photocatalysis field. However, Ta3N5 application in the photocatalytic hydrogen evolution reaction (HER) is limited due to disadvantages such as unsatisfactory separation and transfer of photogenerated carriers. Here we utilize MoS2 as co-catalysts to promote the kinetics of photocatalytic H2 evolution over Ta3N5. The Ta3N5 nanorods were encapsulated into 3D hydrangea-like MoS2 for maximizing the contact areas between Ta3N5 and MoS2 and offering rich active sites. More importantly, spectroscopic analysis and theoretical calculations consistently reveal that the unique interfacial interaction, as well as the matching band alignment between Ta3N5 and MoS2, accelerates the photogenerated charge extraction from Ta3N5 to MoS2, reducing charge recombination losses in Ta3N5. Thus, the optimized Ta3N5/MoS2 hybrid exhibits a substantially enhanced hydrogen evolution rate (56.5 µmol h-1), over 22 times higher than that of pristine Ta3N5. This work may provide a general strategy to overcome the low photocatalytic activity of nitrides for hydrogen evolution.

15.
Dalton Trans ; 48(31): 11927-11933, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31317159

RESUMO

The hydrogen evolution reaction (HER) in alkaline electrolytes is restricted severely by sluggish water dissociation in the Volmer step. Here, we embedded Co crystals into a N-doped carbon (Co@NC) on nickel foam (NF) framework and electrochemically oxidized them in situ to construct a CoOxHy [a mixture of Co(OH)2 and CoOOH] antenna-modified Co@NC core-shell assembly (NF/Co@NC/CoOxHy). The CoOxHy antennas significantly decreased the activation energy of water dissociation to protons (the Volmer step), and hydrogen production over the Co core activated NC shell may follow a multi-carbon catalytic mechanism activated by Co and N atoms. As a result, the NF/Co@NC/CoOxHy configuration exhibits a 40 mV onset potential, a low HER overpotential of 51 mV at 10 mA cm-2, and a current density still reaching around 20 mA cm-2 after 55 h of stability testing in alkaline electrolyte. Our material functionalization strategy may open up a new approach for developing water-alkali electrolysers for use in efficient renewable energy conversion.

16.
Zhongguo Zhong Yao Za Zhi ; 44(2): 265-269, 2019 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-30989943

RESUMO

This study is based on the data analysis of medicinal plant resources and diversity collected from the fourth Chinese traditional medicine resource survey( pilot). Through the analysis of relevant data from 33 census pioneer plots in Guizhou province( area),a total of 265 families,1 432 genera and 5 296 species of medicinal resources were reported,including algae,fungi,lichens,mosses,a total of 43 genera and 35 families,57,48 families,120 genera and 453 species of ferns,gymnosperms 11 families,22 genera and 61 species,167 families,1 243 genera and 4 721 species of angiosperms,4 genera and 4 families four medicinal animals.Compared with the data related to the third survey of traditional Chinese medicine resources,the number of ferns,gymnosperms and angiosperms in the fourth survey has increased far more than that of the third survey. From the regional distribution of medicinal resources,the composition of the genus,the type of life,and the location of the medicine,the richness of the medicinal plant resources in Guizhou province is not only reflected in many types,but also in the variety of medicinal resources. These studies provide a scientific basis for vigorously developing the Chinese herbal medicine industry and the sustainably using medicinal plant resources in Guizhou province.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Plantas Medicinais/classificação , China , Cycadopsida , Gleiquênias , Magnoliopsida
17.
Dalton Trans ; 47(27): 8949-8955, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29922786

RESUMO

Enhancing the charge separation by a semiconductor heterojunction is greatly promising and challenging for photoelectrochemical (PEC) water splitting. Here, we report for the first time the design and fabrication of a TaON/Ta3N5 heterojunction photoanode, in which the electrode Ta3N5 is the primary light absorber and TaON acts as an electron conductor. By combining the merits of the substantial light harvesting of Ta3N5 with the excellent charge transport capability of TaON, the TaON/Ta3N5 heterojunction photoanode, without any co-catalysts, shows a 350 mV negative shift of photocurrent onset potential to 0.65 V versus the reversible hydrogen electrode (RHE) compared to that of the Ta3N5 photoanode. The design and fabrication scheme can be readily extended to other (oxy)nitride semiconductors for heterojunction construction.

18.
ACS Appl Mater Interfaces ; 10(4): 3624-3633, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29308871

RESUMO

For photoelectrochemical (PEC) water splitting, the interface interactions among semiconductors, electrocatalysts, and electrolytes affect the charge separation and catalysis in turn. Here, through the changing of the bath temperature, Co-based oxygen evolution catalysts (OEC) with different crystallinities were electrochemically deposited on Ti-doped Fe2O3 (Ti-Fe2O3) photoanodes. We found: (1) the OEC with low crystallinity is highly ion-permeable, decreasing the interactions between OEC and photoanode due to the intimate interaction between semiconductor and electrolyte; (2) the OEC with high crystallinity is nearly ion-impermeable, is beneficial to form a constant buried junction with semiconductor, and exhibits the low OEC catalytic activity; and (3) the OEC with moderate crystallinity is partially electrolyte-screened, thus contributing to the formation of ideal band bending underneath surface of semiconductor for charge separation and the highly electrocatalytic activity of OEC for lowering over-potentials of water oxidation. Our results demonstrate that to balance the water oxidation activity of OEC and OEC-semiconductor interface energetics is crucial for highly efficient solar energy conversion; in particular, the energy transducer is a semiconductor with a shallow or moderate valence-band level.

19.
ChemSusChem ; 11(1): 237-244, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28940828

RESUMO

The plasmon resonance effect of metal nanoparticles (NPs) offers a promising route to improve the solar energy conversion efficiency of semiconductors. In this study, it is revealed that hot electrons generated by the plasmon resonance effect of Au NPs tend to inject into the surface states instead of the conduction band of Fe2 O3 photoanodes, and then severe surface recombination occurs. Such an electron-transfer process seems to be independent of external applied potentials, but is sensitive to metal-semiconductor interface properties. Passivating the surface states of Fe2 O3 with a noncatalytic Al2 O3 layer can construct an effective resonant energy-transfer interface between Ti-doped Fe2 O3 (Ti-Fe2 O3 ) and Au NPs. In such a Ti-Fe2 O3 /Al2 O3 /Au electrode configuration, the enhanced photoelectrochemical (PEC) water-splitting performance can be attributed to the following two factors: 1) in the non-light-responsive wavelength range of Au NPs, both the relaxing Fermi pinning effect of the Al2 O3 passivation layer and the higher work function of Au enlarge band bending; thus promoting the charge separation; and 2) in the light-responsive wavelength range of Au NPs, the effective resonant energy transfer contributes to light harvesting and conversion. The interface manipulation proposed herein may provide a new route to design efficient plasmonic PEC devices for energy conversion.


Assuntos
Técnicas Eletroquímicas/métodos , Eletrodos , Óxido Ferroso-Férrico/química , Processos Fotoquímicos , Água/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície , Titânio/química
20.
ChemSusChem ; 10(14): 2897-2903, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28586139

RESUMO

Two obstacles hindering solar energy conversion by photoelectrochemical (PEC) water-splitting devices are the charge separation and the transport efficiency at the photoanode-electrolyte interface region. Herein, core-shell-structured Ni@Ni(OH)2 nanoparticles were electrodeposited on the surface of an n-type Si photoanode. The Schottky barrier between Ni and Si is sensitive to the thickness of the Ni(OH)2 shell. The photovoltage output of the photoanode increases with increasing thickness of the Ni(OH)2 shell, and is influenced by interactions between Ni and Ni(OH)2 , the electrolyte screening effect, and the p-type nature of the Ni(OH)2 layer. Ni@Ni(OH)2 core-shell nanoparticles with appropriate shell thicknesses coupled to n-type Si photoanodes promote the separation of photogenerated carriers and improve the charge-injection efficiency to nearly 100 %. An onset potential of 1.03 V versus reversible hydrogen electrode (RHE) and a saturated current density of 36.4 mA cm-2 was obtained for the assembly.


Assuntos
Hidróxidos/química , Níquel/química , Processos Fotoquímicos , Silício/química , Energia Solar , Água/química , Eletroquímica , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA