Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Gastroenterol Hepatol ; 39(5): 847-857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38240493

RESUMO

BACKGROUND: Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have a higher risk of osteoporosis/fractures; however, the causal relationship remains unclear. METHODS: Publicly available genome-wide association studies (GWASs) were used for Mendelian randomization (MR) analysis. GWASs of NAFLD and fractures were obtained from the FinnGen Consortium. GWASs of bone mineral density (BMD) were derived from a meta-analysis. GWASs of obesity, diabetes, liver function, and serum lipid-related metrics were used to clarify whether the accompanying NAFLD symptoms contributed to fractures. Moreover, two additional GWASs of NAFLD were applied. RESULTS: A causal association was not observed between NAFLD and BMD using GWASs from the FinnGen Consortium. However, a causal relationship between NAFLD and femoral neck-BMD (FN-BMD), a suggestive relationship between fibrosis and FN-BMD, and between NAFLD and osteoporosis were identified in replication GWASs. Genetically proxied body mass index (BMI), high-density lipoprotein (HDL), and hip circumference increased the likelihood of lower limb fractures. The waist-to-hip ratio decreased, whereas glycated hemoglobin (HbA1C) and homeostasis model assessment of ß-cell function (HOMA-B) increased the risk of forearm fractures. Low-density lipoprotein (LDL) reduced, whereas HbA1C increased the incidence of femoral fractures. Alkaline phosphatase (ALP) raised the risk of foot fractures. However, after a multivariate MR analysis (adjusted for BMI), all the relationships became insignificant. CONCLUSIONS: NAFLD caused reduced BMD, and genetically predicted HDL, LDL, HbA1C, HOMA-B, ALP, hip circumference, and waist-to-hip ratio causally increased the risk of fractures. BMI may mediate causal relationships. Larger GWASs are required to verify this finding.


Assuntos
Índice de Massa Corporal , Densidade Óssea , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Hepatopatia Gordurosa não Alcoólica , Osteoporose , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Humanos , Densidade Óssea/genética , Osteoporose/genética , Osteoporose/etiologia , Relação Cintura-Quadril , Fraturas Ósseas/etiologia , Fraturas Ósseas/genética , Fraturas Ósseas/epidemiologia , Hemoglobinas Glicadas/metabolismo , Colo do Fêmur/diagnóstico por imagem , Risco , Lipoproteínas HDL/sangue
2.
Stem Cell Rev Rep ; 20(2): 447-454, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993759

RESUMO

Stem cell therapy holds great promise for future clinical practice for treatment of advanced liver diseases. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, has not been fully elucidated. Herein, recent advances regarding the imaging tools for stem cells tracking mainly in chronic liver diseases with the advantages and disadvantages of each approach have been described. Magnetic resonance imaging is a promising clinical imaging modality due to non-radioactivity, excellent penetrability, and high spatial resolution. Fluorescence imaging and radionuclide imaging demonstrate relatively increased sensitivity, with the latter excelling in real-time monitoring. Reporter genes specialize in long-term tracing. Nevertheless, the disadvantages of low sensitivity, radiation, exogenous gene risk are inevitably present in each of these means, respectively. In this review, we aim to comprehensively evaluate the current state of methods for tracking of stem cell, highlighting their strengths and weaknesses, and providing insights into their future potential. Multimodality imaging strategies may overcome the inherent limitations of single-modality imaging by combining the strengths of different imaging techniques to provide more comprehensive information in the clinical setting.


Assuntos
Hepatopatias , Transplante de Células-Tronco , Humanos , Transplante de Células-Tronco/métodos , Genes Reporter , Imageamento por Ressonância Magnética/métodos , Hepatopatias/terapia
3.
Clin Case Rep ; 11(9): e7912, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37700775

RESUMO

Key Clinical Message: We report a young man with isolated elevated AST. He had no other evidence of liver or other related diseases. All the tests and examination reports were negative. The final diagnosis of macro-AST was confirmed by PEG precipitation tests. Abstract: Elevated liver enzymes, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), may commonly indicate liver injury. However, macro-AST is generally a benign condition that may be considered as pathologic by clinicians. A young man with isolated elevated AST for more than 10 years who have taken extensive tests and examinations was diagnosed with macro-AST in our article. Thus, in patients with isolated AST-elevation, polyethylene glycol (PEG) precipitation test was recommended to test whether macro-AST could be diagnosed.

4.
Sci Rep ; 12(1): 16247, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171401

RESUMO

Cholangiocarcinoma (CCA) is a highly malignant disease with a poor prognosis, and mechanisms of initiation and development are not well characterized. It is long noncoding RNAs (lncRNAs) acting as miRNA decoys to regulate cancer-related RNAs in competing endogenous RNA (ceRNA) networks that suggest a possible molecular mechanism in CCA. The current study aims to find potential prognosis biomarkers and small molecule therapeutic targets based on the construction of a CCA prognosis-related ceRNA network. A transcriptome dataset for CCA was downloaded from the TCGA database. Differentially expressed lncRNAs (DElncRNAs), DEmiRNAs and DEmRNAs were identified based on the differential expression and a DEceRNA network was constructed using predicted miRNA-lncRNA and miRNA-mRNA interactions. Heat maps, PCA analysis, and Pathway enrichment analysis and GO enrichment analysis were conducted. The prognostic risk model and molecular docking were constructed based on identified key ceRNA networks. A DElncRNA-miRNA-mRNAs network consisting of 434 lncRNA-miRNA pairs and 284 miRNA-mRNA pairs with 200 lncRNAs, 21 miRNAs, and 245 mRNAs was constructed. There were three lncRNAs (AC090772.1, LINC00519, and THAP7-AS1) and their downstream mRNAs (MECOM, MBNL3, RCN2) screened out as prognostic factors in CAA. Three key networks (LINC00519/ hsa-mir-22/ MECOM, THAP7-AS1/hsa-mir-155/MBNL3, and THAP7-AS1/hsa-mir-155/RCN2) were identified based on binding sites prediction and survival analysis. A prognostic risk model was established with a good predictive ability (AUC = 0.66-0.83). Four anticancer small molecules, MECOM and 17-alpha-estradiol (-7.1 kcal/mol), RCN2 and emodin (-8.3 kcal/mol), RCN2 and alpha-tocopherol (-5.6 kcal/mol), and MBNL3 and 17-beta-estradiol (-7.1 kcal/mol) were identified. Based on the DEceRNA network and Kaplan-Meier survival analysis, we identified three important ceRNA networks associated with the poor prognosis of CCA. Four anti-cancer small molecules were screened out by computer-assisted drug screening as potential small molecules for the treatment of CCA. This study provides theoretical support for the development of ceRNA network-based drugs to improve the prognosis of CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Emodina , MicroRNAs , RNA Longo não Codificante , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/genética , Proteínas de Ligação ao Cálcio , Colangiocarcinoma/patologia , Biologia Computacional , Estradiol , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , alfa-Tocoferol
5.
Crit Rev Eukaryot Gene Expr ; 32(4): 57-72, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35695666

RESUMO

Centromere protein family member genes (CENPx genes) have been reported to be exceptionally expressed in various cancers. However, the systematic analysis of their roles in lung adenocarcinoma (LUAD) is still lacking. The aim of this study is to comprehensively analyze the expression and survival value of CENPx genes in LUAD and to perform immune analysis and related mechanistic investigations. We confirmed that CENPA, CENPF, CENPI, CENPK, CENPM, CENPN, CENPU and CENPW were highly expressed in LUAD, and their high expression were associated with poor prognosis (P < 0.05). Methylation results showed that methylation of one CpG site on promotor of CENPF, one of CENPU and two CENPMs were relevant to overall survival in LUAD. The gene alteration analysis demonstrated that the altered group of CENPF were correlated with poor overall survival. Microsatellite instability analysis concluded that the expression of CENPF and microsatellite instability scores were correlated positively with statistical significance. In addition, the expression changes of these eight genes were significantly associated with immune cell infiltration and the expression of immunoinhibitors, immunostimulators, and major histocompatibility complex (MHC) molecules. Functional enrichment analysis indicated that directly related genes were mainly involved in MRNA splicing, via spliceosome, Poly(A) RNA binding and Spliceosome. Moreover, we established a risk model based on LASSO regression. The expression changes of these eight genes in the Gene Expression Omnibus were also highly expressed in LUAD-compared with normal tissues, which confirmed the analysis in the Gene Expression Profiling Interactive Analysis (GEPIA) database. To sum up, we aimed to provide new biomarkers.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Centrômero/metabolismo , Centrômero/patologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Família , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Instabilidade de Microssatélites
6.
Am J Physiol Cell Physiol ; 321(2): C384-C393, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232747

RESUMO

Inflammation of the kidney is a key contributor to proliferative glomerulonephritis, and kidney damage during glomerulonephritis can lead to renal failure. The immune response associated with glomerulonephritis episodes is a major determinant of patient outcomes, and understanding this response is paramount for effective therapeutic treatment. Neutrophils are the first responders to sites of infection or tissue injury and are a significant cellular infiltrate during proliferative glomerulonephritis. This immune cell was initially recognized as a "blunt" nonspecific effector cell that was recruited to kill pathogens and then die quickly. However, recent studies have shown that the behavior and function of neutrophils are substantially more complex. Neutrophil recruitment to inflammatory sites must be carefully regulated so that these potent cells accurately arrive at tissue sites and perform their functions without nonspecific injury to other locations. As the kidney contains unique microvasculature befitting their specialized role in blood filtration, the recruitment of neutrophils in the renal environment differs from other organs. This Mini-Review will describe how advances in live-animal (intravital) imaging led to the discovery of novel recruitment pathways in the kidney, particularly in the glomeruli, and highlight these differences to canonical neutrophil recruitment. In addition, molecular engagement of surface molecules that lead to intracellular signaling, which is followed by neutrophil capture in the glomeruli, is also briefly discussed. Finally, the contribution of other immune cells in renal neutrophil recruitment, the fate of the emigrated neutrophils after inflammation, and the relevance of mouse models compared with human glomerulonephritides will also be explored.


Assuntos
Glomerulonefrite/metabolismo , Glomérulos Renais/metabolismo , Rim/metabolismo , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Humanos , Inflamação/metabolismo
7.
Biomolecules ; 11(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069651

RESUMO

The dramatic increase in antimicrobial resistance (AMR) highlights an urgent need to develop new antimicrobial therapies. Thus, antimicrobial peptides (AMPs) have emerged as promising novel antibiotic alternatives. Feleucin-K3 is an amphiphilic α-helical nonapeptide that has powerful antimicrobial activity. In our previous study, it was found that the fourth residue of Feleucin-K3 is important for antimicrobial activity. After α-(4-pentenyl)-Ala was introduced into this position, both the antimicrobial activity and stability were greatly improved. Herein, to improve the limitations of Feleucin-K3, this unnatural amino acid was further introduced into different positions of Feleucin-K3. Among these synthetic Feleucin-K3 analogs, the N-terminal-substituted analog Feleucin-K65 (K65) and C-terminal-substituted analog Feleucin-K70 (K70) had preferable antimicrobial activity. In particular, their antimicrobial activities against multidrug-resistant bacteria were more potent than that of antibiotics. The stabilities of these peptides in salt and serum environments were improved compared with those of Feleucin-K3. In addition, these analogs had low hemolytic activity and AMR. More importantly, they effectively inhibited biofilm formation and exhibited considerable efficacy compared with traditional antibiotics against biofilm infection caused by methicillin-resistant Staphylococcus aureus (MRSA). In antimicrobial mechanism studies, K65 and K70 mainly permeated the outer membrane and depolarized the cytoplasmic membrane, resulting in cellular component leakage and cell death. In summary, analogs K65 and K70 are potential antimicrobial alternatives to solve the antibiotic crisis.


Assuntos
Antibacterianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/fisiologia , Infecções Estafilocócicas/tratamento farmacológico , Alanina/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Biofilmes/efeitos dos fármacos , Estabilidade de Medicamentos , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Secundária de Proteína , Sais/química , Soro/química
8.
Biomed Res Int ; 2021: 8881843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33564685

RESUMO

BACKGROUND: Diabetic cardiomyopathy is one of the cardiac complications in diabetes patients, eventually resulting in heart failure and increasing morbidity and mortality. Oxidative stress is a critical pathological feature in diabetic hearts, contributing to the development of DCM. Forskolin (FSK) was shown to reduce oxidative stress. This study was aimed at investigating the effects of FSK on diabetic hearts and the relevant molecular mechanisms. METHODS: Streptozotocin- (STZ-) induced diabetes in mice was treated with FSK through intraperitoneal injection. Cardiac functions were evaluated by echocardiography. Hematoxylin-eosin and Masson trichrome staining was employed to determine heart morphological changes and cardiac fibrosis, respectively. Cardiac fibrosis-related markers were detected by western blot. Superoxide dismutase activity, reduced/oxidized glutathione ratio, and malondialdehyde concentration in left ventricles were determined using respective commercial kits. RESULTS: Abnormal cardiac diastolic dysfunction and cardiac fibrosis were observed in diabetic hearts. FSK treatment significantly improved the cardiac diastolic function and attenuated the abnormal morphological change in diabetic hearts. Moreover, FSK treatment in diabetic mice decreased the expression of fibronectin, collagen I, TGF-ß, and α-SMA and reduced myocardial fibrosis. Furthermore, we observed that FSK significantly blocked oxidative stress in diabetic hearts. CONCLUSIONS: Our study demonstrates that FSK protects against the development of DCM in STZ-induced diabetes in mice. Our study suggests that FSK might be a potential target for drug development in treating DCM.


Assuntos
Colforsina/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Actinas/genética , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Fibrose/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Camundongos , Miocárdio/patologia , Fator de Crescimento Transformador beta/genética
9.
Arterioscler Thromb Vasc Biol ; 40(3): 597-610, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31996021

RESUMO

OBJECTIVE: By binding to its high-affinity receptor FcεR1, IgE activates mast cells, macrophages, and other inflammatory and vascular cells. Recent studies support an essential role of IgE in cardiometabolic diseases. Plasma IgE level is an independent predictor of human coronary heart disease. Yet, a direct role of IgE and its mechanisms in cardiometabolic diseases remain incompletely understood. Approach and Results: Using atherosclerosis prone Apoe-/- mice and IgE-deficient Ige-/- mice, we demonstrated that IgE deficiency reduced atherosclerosis lesion burden, lesion lipid deposition, smooth muscle cell and endothelial cell contents, chemokine MCP (monocyte chemoattractant protein)-1 expression and macrophage accumulation. IgE deficiency also reduced bodyweight gain and increased glucose and insulin sensitivities with significantly reduced plasma cholesterol, triglyceride, insulin, and inflammatory cytokines and chemokines, including IL (interleukin)-6, IFN (interferon)-γ, and MCP-1. From atherosclerotic lesions and peritoneal macrophages from Apoe-/-Ige-/- mice that consumed an atherogenic diet, we detected reduced expression of M1 macrophage markers (CD68, MCP-1, TNF [tumor necrosis factor]-α, IL-6, and iNOS [inducible nitric oxide synthase]) but increased expression of M2 macrophage markers (Arg [arginase]-1 and IL-10) and macrophage-sterol-responsive-network molecules (complement C3, lipoprotein lipase, LDLR [low-density lipoprotein receptor]-related protein 1, and TFR [transferrin]) that suppress macrophage foam cell formation. These IgE activities can be reproduced in bone marrow-derived macrophages from wild-type mice, but muted in cells from FcεR1-deficient mice, or blocked by anti-IgE antibody or complement C3 deficiency. CONCLUSIONS: IgE deficiency protects mice from diet-induced atherosclerosis, obesity, glucose tolerance, and insulin resistance by regulating macrophage polarization, macrophage-sterol-responsive-network gene expression, and foam cell formation.


Assuntos
Aorta/metabolismo , Aterosclerose/metabolismo , Células Espumosas/metabolismo , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Ativação de Macrófagos , Macrófagos Peritoneais/metabolismo , Obesidade/metabolismo , Animais , Aorta/imunologia , Aorta/patologia , Aterosclerose/imunologia , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Glicemia/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Células Espumosas/imunologia , Células Espumosas/patologia , Redes Reguladoras de Genes , Imunoglobulina E/deficiência , Imunoglobulina E/genética , Inflamação/imunologia , Inflamação/patologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Obesidade/imunologia , Obesidade/patologia , Obesidade/prevenção & controle , Fenótipo , Placa Aterosclerótica , Receptores de IgE/genética , Receptores de IgE/metabolismo , Transdução de Sinais , Esteróis/metabolismo
10.
Physiol Rev ; 99(2): 1223-1248, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30758246

RESUMO

Neutrophils have always been considered as uncomplicated front-line troopers of the innate immune system equipped with limited proinflammatory duties. Yet recently, the role of the neutrophil has been undergoing a rejuvenation of sorts. Neutrophils are now considered complex cells capable of a significant array of specialized functions, and as an effector of the innate immune response, they are able to regulate many processes such as acute injury and repair, cancer, autoimmunity, and chronic inflammatory processes. Furthermore, evidence exists to indicate that neutrophils also contribute to adaptive immunity by aiding the development of specific adaptive immune responses or guiding the subsequent adaptive immune response. With this revived interest in neutrophils and their many novel functions, it is prudent to review what is currently known about neutrophils and, even more importantly, understand what information is lacking. We discuss the essential features of the neutrophil, from its origins, lifespan, subsets, margination and sequestration of the neutrophil to the death of the neutrophil. We highlight neutrophil recruitment to both infected and injured tissues and outline differences in recruitment of neutrophils between different tissues. Finally, we examine how neutrophils use different mechanisms to either bolster protective immune responses or negatively cause pathological outcomes at different locations.


Assuntos
Neutrófilos/fisiologia , Imunidade Adaptativa , Animais , Imunidade Inata , Infecções/imunologia , Inflamação/imunologia , Neoplasias/imunologia
11.
Immunity ; 47(4): 752-765.e5, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045904

RESUMO

After traumatic injury, some cells function as detectors to sense injury and to modulate the local immune response toward a restitution phase by affecting the local cytokine milieu. Using intravital microscopy, we observed that patrolling invariant natural killer T (iNKT) cells were initially excluded from a site of hepatic injury but subsequently were strategically arrested first via self-antigens and then by cytokines, circumscribing the injured site at exactly the location where monocytes co-localized and hepatocytes proliferated. Activation of iNKT cells by self-antigens resulted in the production of interleukin-4 (IL-4) but not interferon-γ (IFN-γ). This promoted increased hepatocyte proliferation, monocyte transition (from Ly6Chi to Ly6Clo), and improved healing where IL-4 from iNKT cells was critical for these processes. Disruption of any of these mechanisms led to delayed wound healing. We have shown that self-antigen-driven iNKT cells function as sensors and orchestrators of the transformation from inflammation to tissue restitution for essential timely wound repair.


Assuntos
Hepatócitos/imunologia , Inflamação/imunologia , Fígado/imunologia , Células T Matadoras Naturais/imunologia , Animais , Autoantígenos/imunologia , Proliferação de Células , Hepatócitos/metabolismo , Hepatócitos/patologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Células de Kupffer/imunologia , Fígado/lesões , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Monócitos/imunologia , Fatores de Tempo , Cicatrização/imunologia
12.
Sci Rep ; 7(1): 10515, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874772

RESUMO

The prevailing view is that therapeutic antibodies deplete cells through opsonization and subsequent phagocytosis, complement-dependent lysis or antibody-dependent cellular-cytotoxicity. We used high resolution in vivo imaging to identify a new antibody-dependent cell death pathway where Kupffer cells ripped large fragments off crawling antibody-coated iNKT cells. This antibody-dependent fragmentation process resulted in lethality and depletion of crawling iNKT cells in the liver sinusoids and lung capillaries. iNKT cell depletion was Fcy-receptor dependent and required iNKT cell crawling. Blood, spleen or joint iNKT cells that did not crawl were not depleted. The antibody required high glycosylation for sufficiently strong binding of the iNKT cells to the Fc Receptors on Kupffer cells. Using an acetaminophen overdose model, this approach functionally depleted hepatic iNKT cells and affected the severity of liver injury. This study reveals a new mechanism of antibody-dependent killing in vivo and raises implications for the design of new antibodies for cancer and auto-reactive immune cells.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Acetaminofen/efeitos adversos , Animais , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Depleção Linfocítica , Camundongos , Camundongos Transgênicos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo
13.
Gastroenterology ; 151(6): 1176-1191, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27569723

RESUMO

BACKGROUND & AIMS: Resident macrophages are derived from yolk sac precursors and seed the liver during embryogenesis. Native cells may be replaced by bone marrow precursors during extensive injuries, irradiation, and infections. We investigated the liver populations of myeloid immune cells and their location, as well as the dynamics of phagocyte repopulation after full depletion. The effects on liver function due to the substitution of original phagocytes by bone marrow-derived surrogates were also examined. METHODS: We collected and analyzed liver tissues from C57BL/6 (control), LysM-EGFP, B6 ACTb-EGFP, CCR2-/-, CD11c-EYFP, CD11c-EYFP-DTR, germ-free mice, CX3CR1gfp/gfp, CX3CR1gpf/wt, and CX3CR1-DTR-EYFP. Liver nonparenchymal cells were immunophenotyped using mass cytometry and gene expression analyses. Kupffer and dendritic cells were depleted from mice by administration of clodronate, and their location and phenotype were examined using intravital microscopy and time-of-flight mass cytometry. Mice were given acetaminophen gavage or intravenous injections of fluorescently labeled Escherichia coli, blood samples were collected and analyzed, and liver function was evaluated. We assessed cytokine profiles of liver tissues using a multiplexed array. RESULTS: Using mass cytometry and gene expression analyses, we identified 2 populations of hepatic macrophages and 2 populations of monocytes. We also identified 4 populations of dendritic cells and 1 population of basophils. After selective depletion of liver phagocytes, intravascular myeloid precursors began to differentiate into macrophages and dendritic cells; dendritic cells migrated out of sinusoids, after a delay, via the chemokine CX3CL1. The cell distribution returned to normal in 2 weeks, but the repopulated livers were unable to fully respond to drug-induced injury or clear bacteria for at least 1 month. This defect was associated with increased levels of inflammatory cytokines, and dexamethasone accelerated the repopulation of liver phagocytes. CONCLUSIONS: In studies of hepatic phagocyte depletion in mice, we found that myeloid precursors can differentiate into liver macrophages and dendritic cells, which each localize to distinct tissue compartments. During replenishment, macrophages acquire the ability to respond appropriately to hepatic injury and to remove bacteria from the blood stream.


Assuntos
Antígenos CD/análise , Células da Medula Óssea/fisiologia , Diferenciação Celular , Fígado/citologia , Fígado/fisiopatologia , Células Mieloides/fisiologia , Acetaminofen , Animais , Células da Medula Óssea/citologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Quimiocina CX3CL1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/química , Imunofenotipagem/métodos , Microscopia Intravital , Lectinas/genética , Fígado/imunologia , Fígado/metabolismo , Macrófagos/química , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microvasos/metabolismo , Monócitos/química , Células Mieloides/química , Fenótipo , Transcriptoma
14.
Appl Opt ; 54(23): 7120-3, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26368385

RESUMO

In this study, we experimentally demonstrate the generation of 760 fs pulse duration from a diode-pumped Yb:LuAG mode-locked laser at 1032 nm. At the repetition rate of 58.6 MHz, the maximum average power of 1.07 W was obtained, corresponding to the peak power of 24 kW. To our knowledge, these results represent the shortest pulse duration and highest peak power ever obtained for a 1032 nm mode-locked laser with Yb:LuAG crystal.

15.
Front Immunol ; 6: 240, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042123

RESUMO

Natural killer T (NKT) cells were first recognized more than two decades ago as a separate and distinct lymphocyte lineage that modulates an expansive range of immune responses. As innate immune cells, NKT cells are activated early during inflammation and infection, and can subsequently stimulate or suppress the ensuing immune response. As a result, researchers hope to harness the immunomodulatory properties of NKT cells to treat a variety of diseases. However, many questions still remain unanswered regarding the biology of NKT cells, including how these cells traffic from the thymus to peripheral organs and how they play such contrasting roles in different immune responses and diseases. In this new era of intravital fluorescence microscopy, we are now able to employ this powerful tool to provide quantitative and dynamic insights into NKT cell biology including cellular dynamics, patrolling, and immunoregulatory functions with exquisite resolution. This review will highlight and discuss recent studies that use intravital imaging to understand the spectrum of NKT cell behavior in a variety of animal models.

16.
Eur Neuropsychopharmacol ; 22(7): 527-35, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22245542

RESUMO

Homer proteins are associated with both dopaminergic and glutamatergic function. In addition, these proteins are implicated in many signal transduction pathways that are also putative targets of the mood stabilizers lithium and valproate (VPA). This study investigated the effect of in vivo chronic administration of therapeutically-relevant doses of lithium and VPA on the expression of the inducible (Homer1a and ania-3) and constitutive (Homer1b/c) isoforms of the Homer1 gene in rat brain, and of two other Homer-related genes: Inositol 1,4,5 trisphosphate receptor (IP3R) and Shank. Homer1b/c was significantly decreased in cortex by VPA, and in striatal and accumbal subregions by both lithium and VPA. Both mood stabilizers reduced Homer1b/c expression in the dorsolateral caudate-putamen, while only VPA decreased gene expression in all other striatal subregions. Shank and IP3R were downregulated by both mood stabilizers in the cortex. Neither chronic lithium nor VPA affected Homer immediate-early genes. These results suggest that lithium and VPA similarly modulate the expression of structural postsynaptic genes with topographic specificity in cortical and subcortical regions. Thus, Homer may represent an additional molecular substrate for mood stabilizers, and a potential link with dopaminergic function.


Assuntos
Antimaníacos/farmacologia , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Carbonato de Lítio/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Ácido Valproico/farmacologia , Análise de Variância , Animais , Autorradiografia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Arcabouço Homer , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Proteínas do Tecido Nervoso/genética , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Endogâmicos WKY
17.
J Bacteriol ; 194(1): 161-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22020651

RESUMO

Sortases catalyze the covalent anchoring of proteins to the cell surface on Gram-positive bacteria. Bioinformatic analysis suggests the presence of structural genes encoding sortases and their substrates in the Bacillus subtilis genome. In this study, a ß-lactamase reporter was fused to the cell wall anchoring domain from a putative sortase substrate, YhcR. Covalent anchoring of this fusion protein to the cell wall was confirmed by using the eight-protease-deficient B. subtilis strain WB800 as the host. Inactivation of yhcS abolished the cell wall anchoring reaction. The amounts of fusion protein anchored to the cell wall were proportional to the levels of YhcS. These data demonstrate that YhcS and YhcR are the sortase and sortase substrate, respectively, in B. subtilis. Furthermore, yhcS is not essential for the survival of B. subtilis under the cultivation condition tested. YhcR fusions were distributed helically in the lateral cell wall. Interestingly, when viewed with an epifluorescence microscope, YhcS also appeared to form short helical arcs. This is the first report to illustrate such distribution of sortases in a rod-shaped bacterium. Models for the spatial distribution of both the sortase and its substrate are discussed. The amount of the reporters displayed on the surface was unambiguously quantified via a unique strategy. Under optimal conditions with the overproduction of YhcS, 47,300 YhcR fusions could be displayed per cell. Displayed reporters were biologically functional and surface accessible. Characterization of the sortase-substrate system allowed the successful development of a YhcR-based covalent surface display system. This system may have various biotechnological applications.


Assuntos
Aminoaciltransferases/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Aminoaciltransferases/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde , Proteínas de Membrana , Ligação Proteica , Proteínas Recombinantes , Especificidade por Substrato
19.
Ann Acad Med Singap ; 38(7): 621-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19652854

RESUMO

INTRODUCTION: Multiple myeloma (MM), a malignancy of plasma cells, accounts for 10% of all haematological malignancies and is currently incurable. Although it can be treated, the disease tends to relapse after several years and becomes increasingly resistant to conventional therapy. Investigations into using humoral therapy for MM are now underway with a view that novel therapeutic agents may provide a more targeted therapy for MM. MATERIALS AND METHODS: Here, phage display, a faster and more efficient method compared to classical hybridoma fusion technology, was used as a proof-of-concept to isolate several single-chain Fragment variables (scFv) against Ku86. RESULTS: Anti-Ku86 polyclonal scFvs biopanning was successful where third round scFvs (A(450)~1.1) showed a 1/3 increase in binding as compared to the fi rst round scFvs (A(450)~0.4) with 100 microg/mL of antigen (purified human Ku86). Subsequent selection and verification of monoclonal antibodies using third round biopanning revealed 4 good affinity binding clones ranging from A(450)~0.1 to A450~0.15 on 12.5 microg/mL of antigen as compared to low binders (A(450)~0.07) and these antibodies bind to Ku86 in a specific and dose-dependent manner. Comparative studies were also performed with commercially available murine antibodies and results suggest that 2 of the clones may bind close to the following epitopes aa506-541 and aa1-374. CONCLUSIONS: These studies using phage display provide an alternative and viable method to screen for antibodies quickly and results show that good affinity antibodies against Ku86 have been successfully isolated and they can be used for further studies on MM and form the basis for further development as anti-cancer therapeutic agents.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , DNA Helicases/imunologia , Idiótipos de Imunoglobulinas/isolamento & purificação , Região Variável de Imunoglobulina/isolamento & purificação , Mieloma Múltiplo/imunologia , Afinidade de Anticorpos , Linhagem Celular , Humanos , Idiótipos de Imunoglobulinas/imunologia , Autoantígeno Ku , Biblioteca de Peptídeos , Proteínas Recombinantes
20.
Virology ; 360(1): 150-8, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17098272

RESUMO

The severe acute respiratory syndrome (SARS) outbreak in 2002, which had a high morbidity rate and caused worldwide alarm, remains untreated today even though SARS was eventually isolated and controlled. Development and high-throughput screening of efficacious drugs is therefore critical. However, currently there remains a lack of such a safe system. Here, the generation and characterization of the first selectable, SARS-coronavirus (SARS-CoV)-based replicon cell line which can be used for screening is described. Partial SARS-CoV cDNAs and antibiotic resistance/reporter gene DNA were generated and assembled in vitro to produce the replicon transcription template, which was then transcribed in vitro to generate the replicon RNA. The latter was introduced into a mammalian cell line and the transfected cells were selected for by antibiotic application. For the antibiotic-resistant cell lines thus generated, the expression of reporter gene was ensured by continued monitoring using fluorescent microscopy and flow cytometry. The suitability of this replicon cell line in drug screening was demonstrated by testing the inhibitory effect of several existing drugs and the results demonstrate that the SARS-CoV replicon cell lines provide a safe tool for the identification of SARS-CoV replicase inhibitors. The replicon cell lines thus developed can be applied to high-throughput screening for anti-SARS drugs without the need to grow infectious SARS-CoV.


Assuntos
Antivirais/farmacologia , Linhagem Celular , Cricetinae , Testes de Sensibilidade Microbiana/métodos , Replicon/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Transfecção , Animais , Antivirais/análise , Genoma Viral , RNA Polimerase Dependente de RNA/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA