Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 438: 138047, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38007951

RESUMO

Açaí oil (Euterpe oleracea) is a new active ingredient, originating from the Amazon Forest, which offers numerous benefits as an antioxidant and antimicrobial agent. Here, we report how açaí oil can be used as an active ingredient in gelatin coatings to increase the shelf life of tomatoes. The optimized viscosity and gel strength conditions were 5.40 % gelatin, 17.25 % açaí oil and 18 % plasticizer. FTIR, XRD and zeta potential analysis reveals that repulsive forces dominate the interactions between açaí oil and gelatin. The optimized coating (GAO) reduced mass loss by 8 % and achieved greater firmness (25 N), proving its effectiveness in maintaining tomato quality during storage. For the first time, it was found that the addition of açaí oil to fish gelatin improves the percentage of acidity and firmness of the tomato, delaying ripening, making it a promising alternative as packaging for climacteric fruits.


Assuntos
Filmes Comestíveis , Euterpe , Solanum lycopersicum , Animais , Gelatina , Antioxidantes , Frutas
2.
Sci Rep ; 12(1): 10497, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729201

RESUMO

The objective of this work was to develop biodegradable films by mixing gelatin/carboxymethylcellulose (FG/CMC) and gelatin/polyvinyl alcohol (FG/PVOH) and to evaluate the effect of adding these polymers on the properties of fish gelatin films. The films FG/CMC and FG/PVOH were produced in the proportions 90/10, 80/20 and 70/30 and characterized their physical, chemical and functional properties. The addition of CMC and PVOH improved the mechanical strength, barrier property and water solubility of gelatin films. FG/CMC films showed greater tensile strength and greater solubility than FG/PVOH. The maximum concentration of CMC promoted the highest mechanical resistance, while the highest PVOH content produced the film with the lowest solubility. The proposed mixing systems proved to be adequate to improve the properties of fish gelatin films, with potential for application in the packaging sector.


Assuntos
Gelatina , Álcool de Polivinil , Animais , Carboximetilcelulose Sódica/química , Peixes , Gelatina/química , Álcool de Polivinil/química , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA