Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Dev Biol ; 435(2): 162-169, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29371032

RESUMO

DSL ligands activate the Notch receptor in many cellular contexts across metazoa to specify cell fate. In addition, Notch receptor activity is implicated in post-mitotic morphogenesis and neuronal function. In C. elegans, the DSL family ligand APX-1 is expressed in a subset of cells of the proximal gonad lineage, where it can act as a latent proliferation-promoting signal to maintain proximal germline tumors. Here we examine apx-1 in the proximal gonad and uncover a role in the maintenance of normal ovulation. Depletion of apx-1 causes an endomitotic oocyte (Emo) phenotype and ovulation defects. We find that lag-2 can substitute for apx-1 in this role, that the ovulation defect is partially suppressed by loss of ipp-5, and that lin-12 depletion causes a similar phenotype. In addition, we find that the ovulation defects are often accompanied by a delay of spermathecal distal neck closure after oocyte entry. Although calcium oscillations occur in the spermatheca, calcium signals are abnormal when the distal neck does not close completely. Moreover, oocytes sometimes cannot properly transit through the spermatheca, leading to fragmentation of oocytes once the neck closes. Finally, abnormal oocytes and neck closure defects are seen occasionally when apx-1 or lin-12 activity is reduced in adult animals, suggesting a possible post-developmental role for APX-1 and LIN-12 signaling in ovulation.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Endorreduplicação/genética , Organismos Hermafroditas/genética , Ovulação/genética , Canais de Sódio/fisiologia , Estruturas Animais/anormalidades , Estruturas Animais/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Sinalização do Cálcio , Organismos Hermafroditas/fisiologia , Proteínas de Membrana/fisiologia , Mitose , Oócitos , Ovulação/fisiologia , Fenótipo , Receptores Notch/deficiência , Receptores Notch/fisiologia , Canais de Sódio/deficiência , Canais de Sódio/genética
2.
Development ; 144(16): 2896-2906, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811311

RESUMO

The developmental accumulation of proliferative germ cells in the C. elegans hermaphrodite is sensitive to the organismal environment. Previously, we found that the TGFß signaling pathway links the environment and proliferative germ cell accumulation. Neuronal DAF-7/TGFß causes a DAF-1/TGFßR signaling cascade in the gonadal distal tip cell (DTC), the germline stem cell niche, where it negatively regulates a DAF-3 SMAD and DAF-5 Sno-Ski. LAG-2, a founding DSL ligand family member, is produced in the DTC and activates the GLP-1/Notch receptor on adjacent germ cells to maintain germline stem cell fate. Here, we show that DAF-7/TGFß signaling promotes expression of lag-2 in the DTC in a daf-3-dependent manner. Using ChIP and one-hybrid assays, we find evidence for direct interaction between DAF-3 and the lag-2 promoter. We further identify a 25 bp DAF-3 binding element required for the DTC lag-2 reporter response to the environment and to DAF-7/TGFß signaling. Our results implicate DAF-3 repressor complex activity as a key molecular mechanism whereby the environment influences DSL ligand expression in the niche to modulate developmental expansion of the germline stem cell pool.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Nicho de Células-Tronco/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Imunoprecipitação da Cromatina , Hibridização In Situ , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Nicho de Células-Tronco/genética , Fator de Crescimento Transformador beta/genética
3.
PLoS One ; 10(7): e0134053, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26226295

RESUMO

Endocytosis defines the entry of molecules or macromolecules through the plasma membrane as well as membrane trafficking in the cell. It depends on a large number of proteins that undergo protein-protein and protein-phospholipid interactions. EH Domain containing (EHDs) proteins formulate a family, whose members participate in different stages of endocytosis. Of the four mammalian EHDs (EHD1-EHD4) EHD1 and EHD3 control traffic to the endocytic recycling compartment (ERC) and from the ERC to the plasma membrane, while EHD2 modulates internalization. Recently, we have shown that EHD2 undergoes SUMOylation, which facilitates its exit from the nucleus, where it serves as a co-repressor. In the present study, we tested whether EHD3 undergoes SUMOylation and what is its role in endocytic recycling. We show, both in-vitro and in cell culture, that EHD3 undergoes SUMOylation. Localization of EHD3 to the tubular structures of the ERC depends on its SUMOylation on lysines 315 and 511. Absence of SUMOylation of EHD3 has no effect on its dimerization, an important factor in membrane localization of EHD3, but has a dominant negative effect on its appearance in tubular ERC structures. Non-SUMOylated EHD3 delays transferrin recycling from the ERC to the cell surface. Our findings indicate that SUMOylation of EHD3 is involved in tubulation of the ERC membranes, which is important for efficient recycling.


Assuntos
Proteínas de Transporte/fisiologia , Endocitose/fisiologia , Sumoilação/fisiologia , Animais , Western Blotting , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Células HEK293 , Humanos , Microscopia Confocal
4.
Biochem J ; 444(3): 383-94, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22448906

RESUMO

EHD {EH [Eps15 (epidermal growth factor receptor substrate 15) homology]-domain-containing} proteins participate in several endocytic events, such as the internalization and the recycling processes. There are four EHD proteins in mammalian cells, EHD1-EHD4, each with diverse roles in the recycling pathway of endocytosis. EHD2 is a plasma-membrane-associated member of the EHD family that regulates internalization. Since several endocytic proteins have been shown to undergo nucleocytoplasmic shuttling and have been assigned roles in regulation of gene expression, we tested the possibility that EHD proteins also shuttle to the nucleus. Our results showed that, among the three EHD proteins (EHD1-EHD3) that were tested, only EHD2 accumulates in the nucleus under nuclear export inhibition treatment. Moreover, the presence of a NLS (nuclear localization signal) was essential for its entry into the nucleus. Nuclear exit of EHD2 depended partially on its NES (nuclear export signal). Elimination of a potential SUMOylation site in EHD2 resulted in a major accumulation of the protein in the nucleus, indicating the involvement of SUMOylation in the nuclear exit of EHD2. We confirmed the SUMOylation of EHD2 by employing co-immunoprecipitation and the yeast two-hybrid system. Using GAL4-based transactivation assay as well as a KLF7 (Krüppel-like factor 7)-dependent transcription assay of the p21WAF1/Cip1 [CDKN1A (cyclin-dependent kinase inhibitor 1A)] gene, we showed that EHD2 represses transcription. qRT-PCR (quantitative real-time PCR) of RNA from cells overexpressing EHD2 or of RNA from cells knocked down for EHD2 confirmed that EHD2 represses transcription of the p21WAF1/Cip1 gene.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Proteínas Repressoras/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Células COS , Proteínas de Transporte/genética , Núcleo Celular/genética , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Proteínas Repressoras/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
5.
Biochem J ; 439(3): 433-42, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21756249

RESUMO

EHDs [EH (Eps15 homology)-domain-containing proteins] participate in different stages of endocytosis. EHD2 is a plasma-membrane-associated EHD which regulates trafficking from the plasma membrane and recycling. EHD2 has a role in nucleotide-dependent membrane remodelling and its ATP-binding domain is involved in dimerization, which creates a membrane-binding region. Nucleotide binding is important for association of EHD2 with the plasma membrane, since a nucleotide-free mutant (EHD2 T72A) failed to associate. To elucidate the possible function of EHD2 during endocytic trafficking, we attempted to unravel proteins that interact with EHD2, using the yeast two-hybrid system. A novel interaction was found between EHD2 and Nek3 [NIMA (never in mitosis in Aspergillus nidulans)-related kinase 3], a serine/threonine kinase. EHD2 was also found in association with Vav1, a Nek3-regulated GEF (guanine-nucleotide-exchange factor) for Rho GTPases. Since Vav1 regulates Rac1 activity and promotes actin polymerization, the impact of overexpression of EHD2 on Rac1 activity was tested. The results indicated that wt (wild-type) EHD2, but not its P-loop mutants, reduced Rac1 activity. The inhibitory effect of EHD2 overexpression was partially rescued by co-expression of Rac1 as measured using a cholera toxin trafficking assay. The results of the present study strongly indicate that EHD2 regulates trafficking from the plasma membrane by controlling Rac1 activity.


Assuntos
Proteínas de Transporte/fisiologia , Membrana Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Ativação Enzimática/fisiologia , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Quinases Relacionadas a NIMA , Ligação Proteica/fisiologia , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas rac1 de Ligação ao GTP/biossíntese , Proteínas rac1 de Ligação ao GTP/genética
6.
J Cell Sci ; 122(Pt 4): 471-80, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19174465

RESUMO

Endocytosis, which is a key process in eukaryotic cells, has a central role in maintaining cellular homeostasis, nutrient uptake, development and downregulation of signal transduction. This complex process depends on several protein-protein interactions mediated by specific modules. One such module is the EH domain. The EH-domain-containing proteins comprise a family that includes four vertebrate members (EHD1-EHD4) and one Drosophila ortholog, Past1. We used Drosophila as a model to understand the physiological role of this family of proteins. We observed that the two predicted Past1 transcripts are differentially expressed both temporally and spatially during the life cycle of the fly. Endogenous Past1 as well as Past1A and Past1B, expressed from plasmids, were localized mainly to the membrane of Drosophila-derived cells. We generated mutants in the Past1 gene by excising a P-element inserted in it. The Past1 mutants reached adulthood but died precociously. They were temperature sensitive and infertile because of lesions in the reproductive system. Garland cells that originated from Past1 mutants exhibited a marked decrease in their ability to endocytose fluorescently labeled avidin. Genetic interaction was found between Past1 and members of the Notch signaling pathway, suggesting a role for Past1 in this developmentally crucial signaling pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Proteínas de Drosophila/fisiologia , Endocitose , Infertilidade/metabolismo , Longevidade , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/ultraestrutura , Animais , Sequência de Bases , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/embriologia , Feminino , Imunofluorescência , Deleção de Genes , Expressão Gênica , Masculino , Dados de Sequência Molecular , Oogênese , Receptores Notch/metabolismo , Transdução de Sinais , Maturação do Esperma , Estresse Fisiológico
7.
Reproduction ; 134(2): 379-88, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17660247

RESUMO

The tumor suppressor protein p53 regulates the sensitivity of embryos to such human teratogens as ionizing radiation, diabetes, and cytostatics. Yet, the molecular mechanisms whereby it fulfills this function remain undefined. We used p53 heterozygous (p53(+/-)) female mice mated with p53(+/-) males and then exposed to cyclophosphamide (CP) to test whether caspases 3, 8, and 9 and the transcription factor nuclear factor (NF)-kappaB may serve as p53 targets. Mice were exposed to CP on day 12 of pregnancy and killed on days 15 and 18 of pregnancy to evaluate CP-induced teratogenic effect. The brain and limbs of embryos harvested 24 h after CP treatment were used to evaluate NF-kappaB (p65) DNA-binding activity by an ELISA-based method, the activity of the caspases by appropriate colorimetric kits, apoptosis, and cell proliferation by TUNEL, and 5'-bromo-2'-deoxyuridine incorporation respectively. We observed that the activation of caspases 3, 8, and 9 and the suppression of NF-kappaB DNA binding following CP-induced teratogenic insult took place only in teratologically sensitive organs of p53(+/+) but not p53(-/-) embryos. CP-induced apoptosis and suppression of cell proliferation were also more intensive in the former, and they exhibited a higher incidence of structural anomalies, such as open eyes, digit, limb, and tail anomalies. The analysis of the correlations between the p53 embryonic genotype, the activity of the tested molecules, and the CP-induced dysmorphic events at the cellular and organ level suggests caspases 3, 8, and 9 and NF-kappaB as components of p53-targeting mechanisms in embryos exposed to the teratogen.


Assuntos
Caspases/metabolismo , Ciclofosfamida/toxicidade , DNA/metabolismo , NF-kappa B/metabolismo , Teratogênicos/toxicidade , Proteína Supressora de Tumor p53/genética , Anormalidades Múltiplas/genética , Animais , Apoptose , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Proliferação de Células , Ativação Enzimática/genética , Feminino , Morte Fetal , Retardo do Crescimento Fetal , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Testes de Toxicidade
8.
Rev Diabet Stud ; 2(1): 27-34, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-17491656

RESUMO

BACKGROUND: Mechanisms underlying diabetes-induced fetal growth retardation remain largely undefined. Two events such as the persistent activation of apoptosis or suppression of cell proliferation in embryos might directly result in fetal growth retardation. Evidence implicating the transcription factor NF-kappaB in the regulation of the physiological and teratogen-induced apoptosis as well as cell proliferation suggests that it may be a component of mechanisms underlying this pathology. To address this issue, this study was designed to test: 1) whether diabetes-induced fetal growth retardation is preceded by the modulation of NF-kappaB activity in embryos at the late stage of organogenesis and 2) whether apoptosis is altered in these embryos. METHODS: The embryos and placentas of streptozotocin-induced diabetic mice collected on days 13 and 15 of pregnancy were used to evaluate the expression of NF-kappaB, IkappaBalpha and phosphorylated (p)-IkappaBalpha proteins by Western blot analysis and NF-kappaB DNA binding by an ELISA-based method. The detection of apoptotic cells was performed by the TUNEL assay and the expression of a proapoptotic protein Bax was evaluated by the Western blot. RESULTS: The embryos of diabetic mice were significantly growth retarded, whereas the placental weight did not differ in diabetic or control females. Levels of NF-kappaB and p-IkappaBalpha proteins as well as the amount of NF-kappaB DNA binding was lower in embryos of diabetic mice as compared to those in controls. However, neither excessive apoptosis nor an increased Bax expression was found in growth-retarded embryos and their placentas. CONCLUSION: The study herein revealed that diabetes-induced fetal growth retardation is associated with the suppression of NF-kappaB activity in embryos, which seems to be realized at the level of IkappaB degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA