Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Bioessays ; 46(5): e2300223, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522027

RESUMO

Ageing causes progressive decline in metabolic, behavioural, and physiological functions, leading to a reduced health span. The extracellular matrix (ECM) is the three-dimensional network of macromolecules that provides our tissues with structure and biomechanical resilience. Imbalance between damage and repair/regeneration causes the ECM to undergo structural deterioration with age, contributing to age-associated pathology. The ECM 'Ageing Across the Life Course' interdisciplinary research network (ECMage) was established to bring together researchers in the United Kingdom, and internationally, working on the emerging field of ECM ageing. Here we report on a consultation at a joint meeting of ECMage and the Medical Research Council / Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, held in January 2023, in which delegates analysed the key questions and research opportunities in the field of ECM ageing. We examine fundamental biological questions, enabling technologies, systems of study and emerging in vitro and in silico models, alongside consideration of the broader challenges facing the field.


Assuntos
Envelhecimento , Matriz Extracelular , Animais , Humanos , Matriz Extracelular/metabolismo , Reino Unido
2.
FEBS Lett ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140817

RESUMO

Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.

3.
Sleep Med ; 105: 78-84, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966579

RESUMO

Habitual declines in sleep duration and increased rates of obesity are public health concerns worldwide. Accumulating evidence suggests a prominent link between reduced sleep duration and weight gain. Our cross-sectional study investigated the relationship between sleep duration and body fat distribution in US adults. We extracted data for 5151 participants (2575 men and 2576 women) aged 18-59 years from the US National Health and Nutrition Examination Survey 2011-2012 and 2013-2014. Weekday or workday night-time sleep duration was estimated using an in-home interview questionnaire. Dual-energy x-ray absorptiometry scans were used to determine regional body fat mass (arms, legs, trunk [android and gynoid], and abdominal [subcutaneous and visceral]). Multiple linear regression and restricted cubic spline analyses were performed after adjusting for several demographic, anthropometric, and nutritional covariates. There was a significant negative association between sleep duration and visceral fat mass overall (ß: -12.139, P < 0.001) and by sex (men: ß: -10.096, P < 0.001; women: ß: -11.545, P = 0.038), after adjusting for age, ethnicity, body mass index, total body fat mass, daily energy and alcohol intake, sleep quality and sleep disorder status. Sleep duration and visceral fat appeared to plateau at ≥ 8 h of daily sleep. Sleep duration is negatively associated with visceral fat mass accumulation during adulthood with possibly no benefits beyond 8 h of sleep per day. Mechanistic and prospective studies are required to confirm the effect of sleep duration on visceral adiposity and determine its causes.


Assuntos
Gordura Intra-Abdominal , Transtornos do Sono-Vigília , Masculino , Adulto , Humanos , Feminino , Inquéritos Nutricionais , Gordura Intra-Abdominal/diagnóstico por imagem , Duração do Sono , Estudos Transversais , Sono , Índice de Massa Corporal
4.
Biofactors ; 49(3): 600-611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36585756

RESUMO

Adaptive responses to environmental and physiological challenges, including exposure to low environmental temperature, require extensive structural, redox, and metabolic reprogramming. Detailed molecular mechanisms of such processes in the skin are lacking, especially the role of nuclear factor erythroid 2-related factor 2 (Nrf2) and other closely related redox-sensitive transcription factors Nrf1, Nrf3, and nuclear respiratory factor (NRF1). To investigate the role of Nrf2, we examined redox and metabolic responses in the skin of wild-type (WT) mice and mice lacking functional Nrf2 (Nrf2 KO) at room (RT, 24 ± 1°C) and cold (4 ± 1°C) temperature. Our results demonstrate distinct expression profiles of major enzymes involved in antioxidant defense and key metabolic and mitochondrial pathways in the skin, depending on the functional Nrf2 and/or cold stimulus. Nrf2 KO mice at RT displayed profound alterations in redox, mitochondrial and metabolic responses, generally akin to cold-induced skin responses in WT mice. Immunohistochemical analyses of skin cell compartments (keratinocytes, fibroblasts, hair follicle, and sebaceous gland) and spatial locations (nucleus and cytoplasm) revealed synergistic interactions between members of the Nrf transcription factor family as part of redox-metabolic reprogramming in WT mice upon cold acclimation. In contrast, Nrf2 KO mice at RT showed loss of NRF1 expression and a compensatory activation of Nrf1/Nrf3, which was abolished upon cold, concomitant with blunted redox-metabolic responses. These data show for the first time a novel role for Nrf2 in skin physiology in response to low environmental temperature, with important implications in human connective tissue diseases with altered thermogenic responses.


Assuntos
Fator 2 Relacionado a NF-E2 , Fator 1 Nuclear Respiratório , Camundongos , Humanos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/química , Fator 1 Nuclear Respiratório/metabolismo , Regulação da Expressão Gênica , Oxirredução , Aclimatação/genética
5.
Redox Biol ; 42: 101887, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33579666

RESUMO

"Life is an instantaneous encounter of circulating matter and flowing energy" (Jean Giaja, Serbian physiologist), is one of the most elegant definitions not only of life but the relationship of redox biology and metabolism. Their evolutionary liaison has created inseparable yet dynamic homeostasis in health, which, when disrupted, leads to disease. This interconnection is even more pertinent today, in an era of increasing metabolic diseases of epidemic proportions such as obesity, metabolic syndrome, and diabetes. Despite great advances in understanding the molecular mechanisms of redox and metabolic regulation, we face significant challenges in preventing, diagnosing, and treating metabolic diseases. The etiological association and temporal overlap of these syndromes present significant challenges for the discrimination of appropriate clinical biomarkers for diagnosis, treatment, and outcome prediction. These multifactorial, multiorgan metabolic syndromes with complex etiopathogenic mechanisms are accompanied by disturbed redox equilibrium in target tissues and circulation. Free radicals and reactive species are considered both a causal factor and a consequence of disease status. Thus, determining the subtypes and levels of free radicals and reactive species, oxidatively damaged biomolecules (lipids, proteins, and nucleic acids) and antioxidant defense components as well as redox-sensitive transcription factors and fluxes of redox-dependent metabolic pathways will help define existing and establish novel redox biomarkers for stratifying metabolic diseases. This review aims to discuss diverse redox/metabolic aspects in obesity, metabolic syndrome, and diabetes, with the imperative to help establish a platform for emerging and future redox-metabolic biomarkers research in precision medicine. Future research warrants detailed investigations into the status of redox biomarkers in healthy subjects and patients, including the use of emerging 'omic' profiling technologies (e.g., redox proteomes, lipidomes, metabolomes, and transcriptomes), taking into account the influence of lifestyle (diet, physical activity, sleep, work patterns) as well as circadian ~24h fluctuations in circulatory factors and metabolites.


Assuntos
Diabetes Mellitus , Síndrome Metabólica , Antioxidantes , Humanos , Obesidade , Oxirredução
6.
Biogerontology ; 19(6): 497-517, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374678

RESUMO

Human adult stem cell research is a highly prolific area in modern tissue engineering as these cells have significant potential to provide future cellular therapies for the world's increasingly aged population. Cellular therapies require a smart biomaterial to deliver and localise the cell population; protecting and guiding the stem cells toward predetermined lineage-specific pathways. The cells, in turn, can provide protection to biomaterials and increase its longevity. The right combination of stem cells and biomaterials can significantly increase the therapeutic efficacy. Adult stem cells are utilised to target many changes that negatively impact tissue functions with age. Understanding the underlying mechanisms that lead to changes brought about by the ageing process is imperative as ageing leads to many detrimental effects on stem cell activation, maintenance and differentiation. The circadian clock is an evolutionarily conserved timing mechanism that coordinates physiology, metabolism and behavior with the 24 h solar day to provide temporal tissue homeostasis with the external environment. Circadian rhythms deteriorate with age at both the behavioural and molecular levels, leading to age-associated changes in downstream rhythmic tissue physiology in humans and rodent models. In this review, we highlight recent advances in our knowledge of the role of circadian clocks in adult stem cell maintenance, driven by both cell-autonomous and tissue-specific factors, and the mechanisms by which they co-opt various cellular signaling pathways to impose temporal control on stem cell function. Future research investigating pharmacological and lifestyle interventions by which circadian rhythms within adult stem niches can be manipulated will provide avenues for temporally guided cellular therapies and smart biomaterials to ameliorate age-related tissue deterioration and reduce the burden of chronic disease.


Assuntos
Células-Tronco Adultas/fisiologia , Relógios Circadianos/fisiologia , Regeneração , Animais , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Humanos
7.
Biomedicine (Taipei) ; 8(3): 14, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30141401

RESUMO

In the body, mesenchymal progenitor cells are subjected to a substantial amount external force from different mechanical stresses, each potentially influences their behaviour and maintenance differentially. Tensile stress, or compression loading are just two of these forces, and here we examine the role of cyclical or dynamic mechanical loading on progenitor cell proliferation and differentiation, as well as on other cellular processes including cell morphology, apoptosis and matrix mineralisation. Moreover, we also examine how mechanical stretch can be used to optimise and ready biomaterials before their implantation, and examine the role of the circadian rhythm, the body's innate time keeping system, on biomaterial delivery and acceptance. Finally, we also investigate the effect of mechanical stretch on the circadian rhythm of progenitor cells, as research suggests that mechanical stimulation may be sufficient in itself to synchronise the circadian rhythm of human adult progenitor cells alone, and has also been linked to progenitor cell function. If proven correct, this could offer a novel, non-intrusive method by which human adult progenitor cells may be activated or preconditioned, being readied for differentiation, so that they may be more successfully integrated within a host body, thereby improving tissue engineering techniques and the efficacy of cellular therapies.

8.
Hum Mol Genet ; 27(19): 3353-3360, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982513

RESUMO

Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as LMNA cardiomyopathy) is an anatomic and pathologic condition associated with muscular and electrical dysfunction of the heart, often leading to heart failure-related disability. There is currently no specific therapy available for patients that target the molecular pathophysiology of LMNA cardiomyopathy. We showed here an increase in oxidative stress levels in the hearts of mice carrying LMNA mutation, associated with a decrease of the key cellular antioxidant glutathione (GHS). Oral administration of N-acetyl cysteine, a GHS precursor, led to a marked improvement of GHS content, a decrease in oxidative stress markers including protein carbonyls and an improvement of left ventricular structure and function in a model of LMNA cardiomyopathy. Collectively, our novel results provide therapeutic insights into LMNA cardiomyopathy.


Assuntos
Acetilcisteína/administração & dosagem , Cardiomiopatia Dilatada/genética , Insuficiência Cardíaca/genética , Lamina Tipo A/genética , Acetilcisteína/metabolismo , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Modelos Animais de Doenças , Glutationa/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Humanos , Camundongos , Mutação , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos
9.
Stem Cells Int ; 2017: 2057168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29201058

RESUMO

Optimising cell/tissue constructs so that they can be successfully accepted and integrated within a host body is essential in modern tissue engineering. To do this, adult stem cells are frequently utilised, but there are many aspects of their environment in vivo that are not completely understood. There is evidence to suggest that circadian rhythms and daily circadian temporal cues have substantial effects on stem cell activation, cell cycle, and differentiation. It was hypothesised that the circadian rhythm in human adult stem cells differs depending on the source of tissue and that different entraining signals exert differential effects depending on the anatomical source. Dexamethasone and rhythmic mechanical stretch were used to synchronise stem cells derived from the bone marrow, tooth dental pulp, and abdominal subcutaneous adipose tissue, and it was experimentally evidenced that these different stem cells differed in their circadian clock properties in response to different synchronisation mechanisms. The more primitive dental pulp-derived stem cells did not respond as well to the chemical synchronisation but showed temporal clock gene oscillations following rhythmic mechanical stretch, suggesting that incorporating temporal circadian information of different human adult stem cells will have profound implications in optimising tissue engineering approaches and stem cell therapies.

10.
Nat Commun ; 8: 14287, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134247

RESUMO

Circadian clocks drive ∼24 h rhythms in tissue physiology. They rely on transcriptional/translational feedback loops driven by interacting networks of clock complexes. However, little is known about how cell-intrinsic circadian clocks sense and respond to their microenvironment. Here, we reveal that the breast epithelial clock is regulated by the mechano-chemical stiffness of the cellular microenvironment in primary cell culture. Moreover, the mammary clock is controlled by the periductal extracellular matrix in vivo, which contributes to a dampened circadian rhythm during ageing. Mechanistically, the tension sensing cell-matrix adhesion molecule, vinculin, and the Rho/ROCK pathway, which transduces signals provided by extracellular stiffness into cells, regulate the activity of the core circadian clock complex. We also show that genetic perturbation, or age-associated disruption of self-sustained clocks, compromises the self-renewal capacity of mammary epithelia. Thus, circadian clocks are mechano-sensitive, providing a potential mechanism to explain how ageing influences their amplitude and function.


Assuntos
Envelhecimento/fisiologia , Autorrenovação Celular/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Epitélio/fisiologia , Amidas/farmacologia , Animais , Mama/citologia , Doenças Mamárias/etiologia , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Microambiente Celular/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/efeitos dos fármacos , Células Epiteliais , Matriz Extracelular/fisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cultura Primária de Células , Piridinas/farmacologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/fisiologia , Esferoides Celulares , Técnicas de Cultura de Tecidos , Vinculina/fisiologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
11.
Mamm Genome ; 27(7-8): 341-57, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27215643

RESUMO

Ageing is associated with a progressive loss of skeletal muscle mass, quality and function-sarcopenia, associated with reduced independence and quality of life in older generations. A better understanding of the mechanisms, both genetic and epigenetic, underlying this process would help develop therapeutic interventions to prevent, slow down or reverse muscle wasting associated with ageing. Currently, exercise is the only known effective intervention to delay the progression of sarcopenia. The cellular responses that occur in muscle fibres following exercise provide valuable clues to the molecular mechanisms regulating muscle homoeostasis and potentially the progression of sarcopenia. Redox signalling, as a result of endogenous generation of ROS/RNS in response to muscle contractions, has been identified as a crucial regulator for the adaptive responses to exercise, highlighting the redox environment as a potentially core therapeutic approach to maintain muscle homoeostasis during ageing. Further novel and attractive candidates include the manipulation of microRNA expression. MicroRNAs are potent gene regulators involved in the control of healthy and disease-associated biological processes and their therapeutic potential has been researched in the context of various disorders, including ageing-associated muscle wasting. Finally, we discuss the impact of the circadian clock on the regulation of gene expression in skeletal muscle and whether disruption of the peripheral muscle clock affects sarcopenia and altered responses to exercise. Interventions that include modifying altered redox signalling with age and incorporating genetic mechanisms such as circadian- and microRNA-based gene regulation, may offer potential effective treatments against age-associated sarcopenia.


Assuntos
Envelhecimento/genética , Homeostase/genética , Atrofia Muscular/genética , Sarcopenia/genética , Envelhecimento/patologia , Relógios Circadianos/genética , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Oxirredução , Sarcopenia/fisiopatologia
12.
Genes Dev ; 28(6): 548-60, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24637114

RESUMO

The disruption of the NRF2 (nuclear factor erythroid-derived 2-like 2)/glutathione-mediated antioxidant defense pathway is a critical step in the pathogenesis of several chronic pulmonary diseases and cancer. While the mechanism of NRF2 activation upon oxidative stress has been widely investigated, little is known about the endogenous signals that regulate the NRF2 pathway in lung physiology and pathology. Here we show that an E-box-mediated circadian rhythm of NRF2 protein is essential in regulating the rhythmic expression of antioxidant genes involved in glutathione redox homeostasis in the mouse lung. Using an in vivo bleomycin-induced lung fibrosis model, we reveal a clock "gated" pulmonary response to oxidative injury, with a more severe fibrotic effect when bleomycin was applied at a circadian nadir in NRF2 levels. Timed administration of sulforaphane, an NRF2 activator, significantly blocked this phenotype. Moreover, in the lungs of the arrhythmic Clock(Δ19) mice, the levels of NRF2 and the reduced glutathione are constitutively low, associated with increased protein oxidative damage and a spontaneous fibrotic-like pulmonary phenotype. Our findings reveal a pivotal role for the circadian control of the NRF2/glutathione pathway in combating oxidative/fibrotic lung damage, which might prompt new chronotherapeutic strategies for the treatment of human lung diseases, including idiopathic pulmonary fibrosis.


Assuntos
Relógios Circadianos/fisiologia , Regulação da Expressão Gênica/fisiologia , Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Anticarcinógenos/farmacologia , Bleomicina/farmacologia , Relógios Circadianos/genética , Elementos E-Box/genética , Feminino , Homeostase , Isotiocianatos/farmacologia , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fibrose Pulmonar/induzido quimicamente , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA