Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Allergol Int ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39155214

RESUMO

BACKGROUND: Solubility is a common feature of allergens. However, the causative relationship between this protein-intrinsic feature and sensitization capacity of allergens is not fully understood. This study aimed to proof the concept of solubility as a protein intrinsic feature of allergens. METHODS: The soluble birch pollen allergen Bet v 1 was covalently coupled to 1 µm silica particles. IgE-binding and -cross-linking capacity was assessed by inhibition ELISA and mediator release assay, respectively. Alterations in adjuvanticity by particle-loading were investigated by activation of dendritic cells, mast cells and the Toll-like receptor 4 pathway as well as by Th2 polarization in an IL-4 reporter mouse model. In BALB/c mice, particle-loaded and soluble Bet v 1 were compared in a model of allergic sensitization. Antigen uptake and presentation was analysed by restimulating human Bet v 1-specific T cell lines. RESULTS: Covalent coupling of Bet v 1 to silica particles resulted in an insoluble antigen with retained IgE-binding and -cross-linking capacity and no increase in adjuvanticity. In vivo, particle-loaded Bet v 1 induced significantly lower Bet v 1-specific (s)IgE, whereas sIgG1 and sIgG2a levels remained unaffected. The ratio of Th2 to Th1 cells was significantly lower in mice sensitized with particle-loaded Bet v 1. Particle-loading of Bet v 1 resulted in a 24-fold higher T cell activation capacity in Bet v 1-specific T cell lines, indicating more efficient uptake and presentation than of soluble Bet v 1. CONCLUSIONS: Our results show that solubility is a decisive factor contributing to the sensitization capacity of allergens. The reduction in sensitization capacity of insoluble, particle-loaded antigens results from enhanced antigen uptake and presentation compared to soluble allergens.

2.
Front Mol Biosci ; 10: 1204025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426425

RESUMO

Toll-like receptors of the human immune system are specialized pathogen detectors able to link innate and adaptive immune responses. TLR ligands include among others bacteria-, mycoplasma- or virus-derived compounds such as lipids, lipo- and glycoproteins and nucleic acids. Not only are genetic variations in TLR-related genes associated with the pathogenesis of allergic diseases, including asthma and allergic rhinitis, their expression also differs between allergic and non-allergic individuals. Due to a complex interplay of genes, environmental factors, and allergen sources the interpretation of TLRs involved in immunoglobulin E-mediated diseases remains challenging. Therefore, it is imperative to dissect the role of TLRs in allergies. In this review, we discuss i) the expression of TLRs in organs and cell types involved in the allergic immune response, ii) their involvement in modulating allergy-associated or -protective immune responses, and iii) how differential activation of TLRs by environmental factors, such as microbial, viral or air pollutant exposure, results in allergy development. However, we focus on iv) allergen sources interacting with TLRs, and v) how targeting TLRs could be employed in novel therapeutic strategies. Understanding the contributions of TLRs to allergy development allow the identification of knowledge gaps, provide guidance for ongoing research efforts, and built the foundation for future exploitation of TLRs in vaccine design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA